Douglas Self: Distortion in Power Amplifiers, Part II: The Input Stage
The input stage of an amplifier performs the critical duty of subtracting the feedback signal from the input, to generate the error signal that drives the output. It is almost invariably a differential transconductance stage; a voltage-difference input results in a current output that is essentially insensitive to the voltage at the output port. Its design is also frequently neglected, as it is assumed that the signals involved must be small, and that its linearity can therefore be taken lightly compared with that of the voltage amplifier stage (VAS) or the output stage. This is quite wrong, for a misconceived or even mildly wayward input stage can easily dominate HF distortion performance.
The input transconductance is one of the two parameters setting HF open-loop (o/l) gain, and thus has a powerful influence on stability and transient behaviour as well as distortion. Ideally the designer should set out with some notion of how much o/l gain at 20 kHz will be safe when driving worst-case reactive loads ” a precise measurement method of open-loop gain was outlined last month ” and from this a suitable combination of input transconductance and dominant-pole Miller capacitance can be chosen.
Many of the performance graphs shown here are taken from a model (small-signal stages only) amplifier with a Class-A emitter-follower output, at +16dBu on 15V rails. However, since the output from the input pair is in current form, the rail voltage in itself has no significant effect on the linearity of the input stage. It is the current swing at its output that is the crucial factor.
Vive la differential
The primary motivation for using a differential pair as the input stage of an amplifier is usually its low DC offset. Apart from its inherently lower offset due to the cancellation of the V be voltages, it has the added advantage that its standing current does not have to flow through the feedback network. However a second powerful reason is that its linearity is far superior to single-transistor input stages. Figure 1 shows three versions, in increasing order of sophistication. The resistor-tail version in Figure 1(a) has poor CMRR and PSRR and is general a false economy; it will not be further considered. The mirrored version in Figure 1(c) has the best balance, as well as twice the transconductance of that in Figure 1(b).

Figure 1 : Three versions of an input pair: (a) Simple tail resistor; (b) Tail current-source; (c) With collector current-mirror to give inherently good I c balance.
Intuitively, the input stage should generate a minimal proportion of the overall distortion because the voltage signals it handles are very small, appearing as they do upstream of the VAS that provides almost all the voltage gain. However, above the first pole frequency P1, the current required to drive C dom dominates the proceedings, and this remorselessly doubles with each octave, thus:
For example the current required at 100 W, 8 Ω and 20 kHz, with a 100 pF C dom is 0.5 mA peak, which may be a large proportion of the input standing current, and so the linearity of transconductance for large current excursions will be of the first importance if we want low distortion at high frequencies.
Figure 2, curve A , shows the distortion plot for a model amplifier (at +16dBu output) designed so that the distortion from all other sources is negligible compared with that from the carefully balanced input stage. With a small-signal class-A stage this essentially reduces to making sure that the VAS is properly linearised. Plots are shown for both 80 kHz and 500 kHz measurement bandwidths to show both HF behaviour and LF distortion. It demonstrates that the distortion is below the noise floor until 10 kHz, when it emerges and heaves upwards at a precipitous 18 dB/octave.

Figure 2 : Distortion performance of model amplifier differential pair at A compared with singleton input at B. The singleton generates copious second-harmonic distortion.
This rapid increase is due to the input stage signal current doubling with every octave to drive C dom ; this means that the associated third harmonic distortion will quadruple with every octave increase. Simultaneously the overall NFB available to linearise this distortion is falling at 6 dB/octave since we are almost certainly above the dominant pole frequency P1. The combined effect is an 18 dB/octave rise. If the VAS or the output stage were generating distortion, this would be rising at only 6 dB/octave and would look quite different on the plot.
This form of non-linearity, which depends on the rate-of-change of the output voltage, is the nearest thing to what we normally call TID, an acronym that now seems to be falling out of fashion. Slew-induced distortion SID is a better description of the effect.
If the input pair is not accurately balanced, then the situation is more complex. Second as well as third harmonic distortion is now generated, and by the same reasoning this has a slope of closer to 12 dB/octave. This vital point requires examination.
Input stage in isolation
The use of a single input transistor (Figure 3 (a)) sometimes seems attractive, where the amplifier is capacitor-coupled or has a separate DC servo; it at least promises strict economy. However, the snag is that this singleton configuration has no way to cancel the second-harmonics generated by its strongly-curved exponential V in /I out characteristic.1 The result is shown in Figure 2 curve B, where the distortion is much higher, though rising at the slower rate of 12 dB/octave.

Figure 3 : Singleton and differential pair input stages showing typical DC conditions. The large DC offset of the singleton (2.8 V) is largely due to all the stage current flowing through the feedback resistor RF1.
Although the slope of the distortion plot for the whole amplifier tells much, measurement of input-stage nonlinearity in isolation tells more. This may be done with the test circuit of Figure 4. The op-amp uses shunt feedback to generate an appropriate AC virtual earth at the input-pair output. Note that this current-to-voltage conversion op-amp requires a third -30V rail to allow the i/p pair collectors to work at a realistic DC voltage ” i.e. about one diode’s-worth above the -15V rail. Rf can be scaled to stop op-amp clipping without effect to the input stage. The DC balance of the pair may be manipulated by VR1 : it is instructive to see the THD residual diminish as balance is approached until, at its minimum amplitude, it is almost pure third harmonic.

The differential pair has the great advantage that its transfer characteristic is mathematically highly predictable.2 The output current is related to the differential input voltage V in by:
where V t is the usual ‘thermal voltage’ of about 26 mV at 25ºC and I e the tail current.
This equation demonstrates that the transconductance, g m , is highest at V in = 0 when the two collector currents are equal, and that that the value of this maximum is proportional to the tail current, I e . Note also that beta does not figure in the equation, and that the performance of the input pair is not significantly affected by transistor type.
Figure 5(a) shows the linearising effect of local feedback or degeneration on the voltage-in/current-out law. Figure 5(b) plots transconductance against input voltage and demonstrates a reduced peak transconductance value but with the curve made flatter and more linear over a wider operating range. Adding emitter degeneration markedly improves input stage linearity at the expense of noise performance. Overall amplifier feedback factor is also reduced since the HF closed-loop gain is determined solely by the input transconductance and the value of the dominant-pole capacitor.

Figure 5 : Effect of degeneration on input pair V/l law, showing how transconductance is sacrificed in favour of linearity (SPICE simulation).
Input stage balance
One relatively unknown property of the differential pair in power amplifiers is its sensitivity to exact DC balance. Minor deviations from equality of I c in the pair seriously upset the second-harmonic cancellation by moving the operating point from A in Figure 5(a) to B.
Since the average slope of the characteristic is greatest at A, serious imbalance also reduces the open-loop gain. The effect of small amounts of imbalance is shown in Figure 6 and Table 1: for an input of -45dBu a collector current imbalance of only 2% increases THD from 0.10% to 0.16%; for 10% imbalance this deteriorates to 0.55%. Unsurprisingly, imbalance in the other direction (I c1 > I c2 ) gives similar results.

Figure 6 : Effect of collector-current imbalance on an isolated input pair; the second harmonic rises well above the level of the third if the pair moves away from balance by as little as 2%.

This gives insight4 into the complex changes that accompany the simple changing the value of R2 . For example, we might design an input stage as per Figure 7(a), where R1 has been selected as 1 kΩ by uninspired guesswork and R2 made highish at 10 kΩ in a plausible but misguided attempt to maximise o/l gain by minimising loading on Tr 1 collector. R3 is also made 10 kΩ to give the stage a notional ‘balance’, though unhappily this is a visual rather than electrical balance. The asymmetry is shown in the resulting collector currents: this design will generate avoidable second harmonic distortion, displayed in the 10 kΩ curve of Figure 8.
However, recognising the importance of DC balancing, the circuit can be rethought as per Figure 7(b). If the collector currents are to be roughly balanced, then R2 must be about 2 x R1 , as both have about 0.6 V across them. The effect of this change is shown in the 2.2kΩ curve of Figure 8. The improvement is accentuated as the o/l gain has also increased by some 7 dB, though this has only a minor effect on the closed-loop linearity compared with the improved balance of the input pair. R3 has been excised as it contributes little to stage balance.
The joy of current mirrors
While the input pair can be approximately balanced by the correct choice of R1 and R2 , other circuit tolerances are significant and Figure 6 shows that balance is critical, needing to be accurate to at least 1% for optimal linearity. The standard current-mirror configuration shown in Figure 7(c) forces the two collector currents very close to equality, giving proper cancellation of second harmonic. The resulting improvement shows up in the current-mirror curve of Figure 8.

Figure 7 : Improvements to the input pair: (a) Poorly designed version; (b) Better … partial balance by correct choice of R 2 . (c) Best … near-perfect I c balance enforced by mirror.
There is also less DC offset due to unequal base currents flowing through input and feedback resistances; we often find that a power-amplifier improvement gives at least two separate benefits. This simple mirror has its own residual base current errors but they are not large enough to affect distortion.
The hyperbolic tangent law also holds for the mirrored pair,3 though the output current swing is twice as great for the same input voltage as the resistor-loaded version. This doubled output occurs at the same distortion level as for the single-ended version, as linearity depends on the input voltage, which has not changed. Alternatively, to get the same output we can halve the input which, with a properly balanced pair generating only third harmonic, will produce just one-quarter the distortion, a pleasing result.

Figure 8 : Distortion of model amplifier: (a) Unbalanced with R 2 = 10 kΩ; (b) Partially balanced with R 2 = 2.2kΩ; (c) Accurately balanced by current-mirror.
A low cost mirror made from discrete transistors forgoes the V be matching available to IC designers, and so requires its own emitter degeneration for good current-matching. A voltage drop across the mirror emitter resistors in the range 30″60 mV will be enough to make the effect of V be tolerances on distortion negligible.
If degeneration is omitted, there is significant variation in HF distortion performance with different specimens of the same transistor type. Adding a current mirror to a reasonably well balanced input stage will increase the total o/l gain by at least 6 dB, and by up to 15 dB if the stage was previously poorly balanced. This needs to be taken into account in setting the compensation.
Another happy consequence is that the slew-rate will be roughly doubled, as the input stage can now source and sink current into C dom without wasting it in a collector load. If C dom is 100 pF, the slew rate of Figure 7(b) is about 2.8V/µs up and down, while Figure 7(c) gives 5.6V/µs. The unbalanced pair in Figure 7(a) displays further vices by giving 0.7V/µs positive-going and 5V/µs negative-going.
Improving linearity
Now that the input pair has been fitted with a mirror, we may still feel that the HF distortion needs further reduction; after all, once it emerges from the noise floor it goes up eight times with each doubling of frequency, and so it is well worth pushing the turn point as far as possible up the frequency range.
The input pair shown has a conventional value of tail-current. We have seen that the stage transconductance increases with I c , and so it is possible to increase the g m by increasing the tail-current, and then return it to its previous value (otherwise C dom would have to be increased proportionately to maintain stability margins) by applying local NFB in the form of emitter-degeneration resistors. This ruse powerfully improves input linearity despite its rather unsettling flavour of something-for-nothing. The transistor nonlinearity can here be regarded as an internal nonlinear emitter resistance r e , and what we have done is to reduce the value of this (by increasing I c ) and replace the missing part of it with a linear external resistor, R e .
For a single device, the value of r e can be approximated by:
Our original stage at Figure 9(a) has a per device I c of 600 µA, giving a differential (i.e. mirrored) g m of 23 mA/V and r e = 41.6 Ω. The improved version at Figure 9(b) has I c = 1.35mA and so r e = 18.6Ω. Emitter degeneration resistors of 22Ω are required to reduce the g m back to its original value, as 18.6 + 22 = 41.6.
The distortion measured by the circuit of Figure 4 for a -40dBu input voltage is reduced from 0.32% to 0.032%, which is an extremely valuable linearisation, and will translate into a distortion reduction at HF of about five times for a complete amplifier. For reasons that will emerge later the full advantage is rarely gained. The distortion remains a visually pure third harmonic so long as the input pair remains balanced. Clearly this sort of thing can only be pushed so far, as the reciprocal-law reduction of re is limited by practical values of tail current. A name for this technique seems to be lacking; ‘constant-gm degeneration’ is descriptive but rather a mouthful.

Figure 9 : Input pairs before and after constant-g m degeneration showing how to double stage current while keeping transconductance constant: distortion is reduced by about ten times.
Since the standing current is roughly doubled so has the slew rate: 10V/µs to 20V/µs. Once again we gain two benefits for the price of one modification.
For still better linearity, various techniques exist. When circuit linearity needs a lift, it is often a good approach to increase the local feedback factor, because if this operates in a tight local NFB loop there is often little effect on the overall global-loop stability. A reliable method is to replace the input transistors with complementary-feedback (CFP or Sziklai) pairs, as shown in the stage of Figure 10(a).
If an isolated input stage is measured using the test circuit of Figure 4, the constant g m degenerated version shown in Figure 9(b) yields 0.35% third-harmonic distortion for a -30dBu input voltage, while the CFP version gives 0.045%. Note that the input level here is 10 dB up on the previous example to get well clear of the noise floor. When this stage is put to work in a model amplifier, the third-harmonic distortion at a given frequency is roughly halved, assuming other distortion sources have been appropriately minimised. However, given the steep slope of input stage distortion, this extends the low distortion regime up in frequency by less than an octave. See Figure 11.
The CFP circuit does require a compromise on the value of R c , which sets the proportion of the standing current that goes through the NPN and PNP devices on each side of the stage. In general, a higher value of c gives better linearity, but more noise, due to the lower I c in the NPN devices that are the inputs of the input stage, as it were, causing them to match less well the relatively low source resistances. 2.2kΩ is a reasonable compromise.
Other elaborations of the basic input pair are possible. Power amp design can live with a restricted common-mode range in the input stage that would be unusable in an op-amp, and this gives the designer great scope. Complexity in itself is not a serious disadvantage as the small-signal stages of the typical amplifier are of almost negligible cost compared with mains transformers, heatsinks, etc.
Two established methods to produce a linear input transconductance stage (often referred to in op amp literature simply as a transconductor) are the cross-quad5 and the cascomp6 configurations. The cross-quad (Figure 10(b)) gives a useful reduction in input distortion when operated in isolation but is hard to incorporate in a practical amplifier because it relies on very low source resistance to tame the negative conductances inherent in its operation. The cross-quad works by imposing the input voltage to each half across two base-emitter junctions in series, one in each arm of the circuit. In theory the errors due to non-linear r e of the transistors is divided by beta, but in practice things seem less rosy.

Figure 10 : Some enhanced differential pairs: (a) The complementary feedback pair; (b) The cross-quad; (c) The cascomp.

Figure 11 : Whole-amplifier THD with normal and CFP input stages; input stage distortion only shows above noise floor at 20 kHz, so improvement occurs above this frequency. The noise floor appears high as the measurement bandwidth is 500 kHz.
The cascomp (Figure 10(c)) does not have this snag, though it is significantly more complex to design. Tr 2 , Tr 3 are the main input pair as before, delivering current through cascode transistors Tr 4 , Tr 5 (this does not in itself affect linearity) which, since they carry almost the same current as Tr 2 , Tr 3 duplicate the input V bev errors at their emitters. This is sensed by error diff-amp Tr 6 , Tr 7 whose output currents are summed with the main output in the correct phase for error-correction. By careful optimisation of the (many) circuit variables, distortion at -30dBu input can be reduced to about 0.016% with the circuit values shown. Sadly, this effort provides very little further improvement in whole-amplifier HF distortion over the simpler CFP input, as other distortion mechanisms are coming into play ” for instance the finite ability of the VAS to source current into the other end of C dom.
Power amplifiers with pretensions to sophistication sometimes add cascoding to the standard input differential amplifier. This does nothing to improve input stage linearity as there is no appreciable voltage swing on the input collectors; its main advantage is reduction of the high V ce that the input devices work at. This allows cooler running, and therefore possibly improved thermal balance; a V ce of 5 V usually works well. Isolating the input collector capacitance from the VAS input often allows C dom to be somewhat reduced for the same stability margins, but it is doubtful if the advantages really outweigh the increased complexity.
Other considerations
As might be expected, the noise performance of a power amplifier is set by the input stage, and so it is briefly examined here. Power amp noise is not an irrelevance: a powerful amplifier is bound to have a reasonably high voltage gain and this can easily result in a faint but irritating hiss from efficient loudspeakers even when the volume control is fully retarded.
In the design being evolved here the EIN has been measured at -120dBu, which is only 7 or 8 dB inferior to a first-class microphone preamplifier. The inferiority is largely due to the source resistances seen by the input devices being higher than the usual 150Ω microphone impedance. For example, halving the impedance of the feedback network shown in ptl (22kΩ and 1kΩ) reduces the EIN by approx 2 dB.
Slew rate is another parameter usually set by the input stage, and has a close association with HF distortion. The amplifier slew rate is proportional to the input’s maximum-current capability, most circuit configurations being limited to switching the whole of the tail current to one side or the other. The usual differential pair can only manage half of this, as with the output slewing negatively half the tail-current is wasted in the input collector load R 2 . The addition of an input current-mirror, as advocated, will double the slew rate in both directions.
With a tail current of 1.2mA, the slew rate is improved from about 5V/µs to 10V/µs. (for C dom = 100pF) The constant g m degeneration method of linearity enhancement in Figure 9 further increases it to 20V/µs. The mathematics of voltage-slewing is simple:
Slew rate = I / C dom in V/µs for maximum I in µA, C dom in pF.
The maximum output frequency for a given slew rate and voltage is:
Likewise, a sine wave of given amplitude has a maximum slew-rate (at zero-crossing) of:
So, for example, with a slew rate of 20V/µs the maximum frequency at which 35 V r.m.s. can be sustained is 64 kHz, and if C dom is 100 pF, then the input stage must be able to source and sink 2 mA peak.
A vital point is that the current flowing through C dom must be sourced/sunk by the VAS as well as the input pair. Sinking is usually no problem, as the VAS common-emitter transistor can be turned on as hard as required. The current source or bootstrap at the VAS collector will however have a limited sourcing ability, and this can often turn out to be an unexpected limitation on the positive-going slew rate.