	-	-		
1	()	')	1/	
	7		n	

2700 SERIES			

Audio Test and Measurement System Unmatched Performance

High-Performance Testing with the Audio Precision 2700 Series

Audio Precision's 2700 series is the newest generation of the company's award-winning PC-controlled audio test and measurement instruments, long the recognized worldwide standard for the design and test of audio equipment. The 2700 series continues to provide the unmatched distortion and noise performance required to test the latest advances in converter technology, while raising the bar with new 192k digital input and output capabilities.

In the SYS-2722, a true dual-domain architecture provides uncompromised performance for both analog and digital signals: the hardware generator and analyzer specifications surpass those of any digital configuration, while digital analysis techniques offer a wide array of high-speed, precise measurements for either domain. Cross-domain work can be accomplished using the best of both worlds.

Unparalleled Precision

Low Distortion

Analog system 1 kHz THD+N, 20 kHz BW \leq -112 dB (Typical worst case harmonic < -130 dB)

Digital generator distortion/spurious products ≤ –160 dB

High Bandwidth

Analog signal generation to **204 kHZ**Analog measurements to **500 kHz**Analysis by FFTs and Multitone to **120 kHz**

Low Noise

Analog analyzer 22 Hz–22 kHz BW \leq –118 dBu Analog analyzer A-weighted \leq –124 dBu

Flat Response

Analog system 20 Hz–20 kHz typically ± **0.003 dB**

Low Crosstalk

Analog inputs 20 Hz–20 kHz \leq -140 dB Analog output 20 Hz–20 kHz \leq -120 dB

Low Jitter

700 Hz–100 kHz BW \leq 600 ps 50 Hz–100 kHz BW \leq 1.0 ns

FFT Acquisitions

Up to **4 M Samples** (87 s @ 48 kHz F_s)

The 2700 series

- The unparalleled precision of a dedicated hardware instrument.
- Fast instrument operation and powerful analysis under sophisticated control software.
- Programmatic control for high-speed automation.
- Serial digital interface testing.
- Flexible configuration options.
- * A family of auxiliary instruments for specialized testing.
- * AES3, IEC60958 (SPDIF) and PSIA input and output sample rates at 192 kHz.

The 2700 series. Proven, reliable, high-performance technology from Audio Precision, the industry's preeminent audio test and measurement company.

Analog system 1 kHz THD+N, 20 kHz BW ≤ -112 dB

2700 series dual-domain model SYS-2722 192k

PC Control and Programmability

The 2700 series control software is a powerful and sophisticated real-time interface that runs on a PC controlling the instrument. Hardware and software system modules and functions are operated by settings on software panels, with measurements provided in panel reading displays. Settings and readings can be swept and plotted on X-Y graphs, modified by various algorithms, compared against limits or analyzed by DSP techniques. The control software is flexible and configurable, addressing a wide range of uses from benchtop engineering to production testing.

Test setups, measurement data, graphs and other test components are saved on the PC. These files can be emailed or exchanged between co-workers to quickly duplicate test setups, study test results or publish reports — regardless of location.

The 2700 series control software supports Microsoft Windows 98, Windows 2000 and Windows XP. Graphs and data can be pasted into other Windows-compatible applications and can be exported in a number of different formats.

- GPIB versions of each 2700 series model are available, providing an IEEE-488 interface for compatibility with third-party automated testing instruments.
- The entire testing process can be automated for repeatability and speed by programmatically control-

Stop Learn Mode

 You can create, edit and run AP Basic macros without ever leaving the control software. The Macro Editor provides complete editing, debugging and syntax help.

Create and edit macros and verify your code using the Step and Trace mode in the Macro Editor.

- AP Basic works with the control software using ActiveX Automation. The entire command structure is accessible to Microsoft Visual Basic®, enabling you to integrate your 2700 series instrument with a wide variety of applications and equipment.
- Learn Mode is a "macro recorder" that provides a fast and convenient way to generate automated test macros, even if you have little programming experience.
- A Dialog Editor provides an easy way to design a custom user interface "front-end" for your automation macros. Drag-and-drop in the Dialog Editor, and the underlying code is written into the Macro Editor script.

Use the Object Browser to easily integrate commands and correct syntax while working in the Macro Editor.

Design professional user interface panels within your macro using the Dialog Editor.

Unparalleled Speed

The 2700 series offers an array of powerful, time-saving analysis tools to speed your testing procedures.

Multitone Multitone testing techniques can provide response, distortion, noise, crosstalk and phase measurements — all from a single sub-second acquisition. You can address a wide variety of high-speed testing applications by choosing a standard stimulus waveform, or by making your own using the multitone creation utility. In addition to great speed, multitone analysis brings other advantages: a stimulus signal, for example, that is a rich mix of frequencies, levels and phase relationships that more closely resembles program material than conventional single stimulus tones; and the unique ability to measure noise or very low distortion products in the presence of signal.

Fast detection The DSP-implemented Fast RMS Detector speeds sine wave sweeps by making measurements in as little as one cycle of the sine wave. This can provide an improvement in testing speed of an order of magnitude compared to normal RMS detector techniques.

Harmonic Sum 1

Harmonic selection controls and a graph of individual harmonic amplitudes plotted against frequency.

Proprietary Harmonic Distortion Analyzer An FFT-implemented dual-channel Harmonic Distortion Analyzer can simultaneously measure the individual amplitudes of a fundamental frequency and up to four harmonic products, selectable from the 2nd to the 15th harmonic. Sweeps using this analysis tool can rapidly characterize frequency or amplitude dependent distortion mechanisms.

Fast data settling A sophisticated data settling algorithm enables you to optimize the inherent trade-off between testing speed and measurement accuracy in sweep tests. Individual settling parameters are stored for every measurement available in the instrument.

The graph at the top shows a spectrum display of a multitone stimulus. The next graphs are examples of five dual-channel parameters plotted against frequency, all produced from a single multitone stimulus lasting less than one second.

MLS analysis Quasi-anechoic measurements of transducers and acoustic spaces can be performed using MLS (Maximum Length Sequence) signals and analysis to produce impulse, frequency and phase response graphs in less than one second.

Hardware and software filters Make noise measurements to virtually any international standard using our extensive collection of weighting and band-limiting filters. Use optional Audio Precision hardware filters (for the Analog Analyzer) or Audio Precision software filters (for the DSP Audio Analyzer); or make your own user-downloadable software filters using the Filter Creation Utility.

Loudspeaker impulse response graph, showing a 6.6 ms delay before the impulse peak.

Digital Interface Capabilities

The 2700 series offers both AES3 and IEC60958 serial digital interfaces, with fully configurable serial data and clock ports available via the auxiliary PSIA-2722 Programmable Serial Interface Adapter.

All digital input and output capabilities are functional over the full range of sample rates from 8 kHz to beyond 200 kHz.

The Digital Input/Output panel provides complete control and display of serial interface parameters including connector and format selection, sample rate, resolution, pulse amplitude, active data bits, error flags and received jitter amplitude. A Status Bits panel enables you to set and read interface metadata in both professional and consumer formats. Metadata is displayed in both hex and English interpretations.

Test the performance of AES3 or 60958 receivers with sub-standard signals by introducing impairments to the output serial interface signal. Impairments include variable sample rate, pulse amplitude and rise and fall times, the addition of noise, common-mode signals, controllable jitter and a long cable simulation.

Fully characterize a serial digital bit stream including waveforms, eye patterns, spectrums and histograms, as shown by these nine graphs.

Digital Input/Output panel

Digital Inputs and Outputs

Choose balanced XLR for the AES3 format, unbalanced BNC for the 60958 format, or a Toslink® connector for optical output or input to 192k. The second connectors can be used to switch between cables or in dual-connector mode. Rearpanel jacks provide reference, clock and trigger inputs and outputs.

Rear panel connections

Selectively inject various impairments into the digital signal to test device performance.

Use the Digital Interface Analyzer tool to measure and display the interface signal or jitter waveform and spectrum, histograms for a number of interface measurements or to generate an eye pattern. Add jitter of various types and amplitudes to the generated bitstream and measure the effect on the receiver and the resulting audio signal.

Complete Status Bit metadata setting and display for either consumer or professional format.

- An Eye Pattern is a triggered oscilloscope view of the minimum pulse stream amplitude vs. time, computed over thousands of data cells. The eye opening provides a quick check of signal amplitude, signal-to-noise ratio, rise and fall times and jitter.
- Histograms display the probability distribution of pulse stream parameters like timing (jitter), amplitude, sample rate and bit width. The interface signal and the jitter waveform can be viewed either in the time domain (oscilloscope view) or the frequency domain (FFT spectrum).

2700 Series Specifications Summary

ANALOG SIGNAL OUTPU	JTS (except SYS-2720)	Other Signals		Bandreject Amplitude	
Low Distortion Sine Wave	e Generator		ne Waveforms ("Arb Wfm")	Tuning Range (f ₀)	
		Signal	Determined by the associated file specified in the panel	Tuning Accuracy	
requency Range10	U HZ-204 KHZ.		drop-down box.	Bandreject Response	. typically -3 dB at 0.73 f ₀ & 1.37 f ₀ , -20 dB at f ₀ $\pm 10\%$,
Frequency Accuracy	. 0. 000/	Maximum Length Sec	uence ("MLS")		–40 dB at f _o ±2.5%.
High-accuracy mode ±		Sequences	Four pink, four white.		. ± 0.3 dB, 20 Hz–120 kHz (excluding 0.5 $f_{0}\!\!-\!\!2.0$ $f_{0}\!).$
Fast mode ±	:0.5%.	Special Signals		THD+N Function	
Frequency Resolution	0059/	Polarity	Sum of two sine waves phased for reinforcement with	Fundamental Range	
High-accuracy mode0.			normal polarity.	Accuracy	. ±0.3 dB, 20 Hz-120 kHz harmonics.
	.025 Hz, 10 Hz–204.75 Hz, 0.25 Hz, 205 Hz–2.0475 kHz,	Pass Thru	Passes the embedded audio signal from the rear panel	Measurement Bandwidth	
	2.5 Hz, 2.05 kHz–20.475 kHz, 25 Hz, 20.5 kHz–204 kHz.		Reference Input. Ratio of reference rate to output Sample	LF –3 dB	. <10, 22, 100, or 400 Hz.
Amplitude Range	:10 µV-26.66 Vrms [+30.7 dBu].		Rate may not exceed 8:1.	HF –3 dB	. 22k, 30k, 80k, or >500 kHz. (Option filter selection also
	10 μV=13.33 Vrms [+30.7 dBu].	Squarewave			affects bandwidth).
Amplitude Accuracy ±		Frequency Range	20 Hz–20.0 kHz.	Residual THD+N	·
	1.003 dB or 0.05 µVrms, whichever is larger.	Noise Signal		At 1 kHz	. ≤(0.00025% + 1.0 µV) [-112 dB], 22 kHz BW (valid only
Flatness (1 kHz ref)	.003 db of 0.03 pvillis, whichever is larger.	Pseudo-random white			for analyzer inputs ≤8.5 Vrms).
	:0.008 dB (typically <0.003 dB).			20 Hz-20 kHz	. ≤(0.0003% + 1.0 µV) [-110.5 dB], 22 kHz BW,
20 kHz-50 kHz ±		ANALOG OUTPUT CH			\leq (0.0005% + 2.0 μ V) [-106 dB], 80 kHz BW, \leq (0.0010%
50 kHz-120 kHz ±	:0.10 dB.	Source Configuration	Selectable balanced, unbalanced, or CMTST		5.0 μV) [–100 dB], 500 kHz BW
120 kHz-200 kHz +	-0.2 / -0.3 dB.		(common mode test).		. ≤(0.0040% + 5.0 μV) [–88 dB], 500 kHz BW.
Residual THD+N		Source Impedances		Minimum Input	. 5 mV for specified accuracy, usable to <100 μ V with fixed
At 1 kHz ≤	(0.00025% + 1.0 μV) [–112 dB], 22 kHz BW (valid only		40 $\Omega(\pm 1~\Omega)$, 150 Ω ($\pm 1.5~\Omega$), or 600 Ω ($\pm 3~\Omega$).		notch tuning.
	or analyzer inputs ≤8.5 Vrms).	Unbalanced	20 Ω (±1 Ω) or 600 Ω (±3 Ω).	IMD Measurements wi	th ontion "IMD"
	s(0.0003% + 1.0 μV) [–110.5 dB], 22 kHz BW,	Max Output Power into 60	0 Ω	SMPTE (DIN) IMD Fun	
	5(0.0005% + 2.0 μV) [−106 dB], 80 kHz BW, ≤(0.0010% +	Balanced	+30.1 dBm (Rs = 40 Ω).		. Any combination of 40 Hz–250 Hz (LF) and 2 kHz–
	i.0 μV) [–100 dB], 500 kHz BW.		+24.4 dBm (Rs = 20 Ω).	rest orginal compatibility	100 kHz (HF) tones, mixed in any ratio from 0:1 to 8:1
10 Hz–100 kHz≤	s(0.0040% + 5.0 μV) [–88 dB], 500 kHz BW.	Output Related Crosstalk			(LF:HF).
Intermodulation Distortion	on Test Signals with option "IMD"		≤-120 dB or 5 µV, whichever is greater.	CCIF and DFD IMD Fu	
SMPTE (or DIN)	opaon mis		≤–120 dB or 10 μV, whichever is greater.		. Any combination of equal amplitude tones from 4 kHz-
	0, 50, 60, 70, 100, 125, 250, or 500 Hz; all ±1.5%.	ZU NIIZ-IUU KIIZ	=-100 db of 10 µv, will dievel is gleater.	root orginal compatibility	100 kHz spaced 80 Hz–1 kHz.
HF Tone Range2		ANALOG ANALVEED	/ CVC 0700)	DIM (TIM) IMD Function	•
		ANALOG ANALYZER	(except 3 13-2/20)	. ,	. 2.96 kHz-3.15 kHz squarewave mixed with 14 kHz-
Mix Ratio4:	. I UI 1. I (LF.ПГ).	Analog Input Charact	eristics	reat orginal confipationity	15 kHz sine wave (probe tone).
	0 400 400 440 000 050 500 4111 11 4 504		40 mV-160 V in 6.02 dB steps.		. ,
	10, 100, 120, 140, 200, 250, 500 or 1 kHz; all ±1.5%.		230 Vpk, 160 Vrms (dc to 20 kHz), overload protected in	Wow & Flutter Measur	ements with option "W&F"
Center Frequency 4.	.5 kHz–200 kHz.	maximum rator input	all ranges.	Test Signal Compatibility	
DIM (or TIM)		Input Impedance		Normal	. 2.80 kHz-3.35 kHz.
	.15 kHz (DIM-30 and DIM-100),		200 kΩ / 95 pF (differential).	"High-band"	. 11.5 kHz-13.5 kHz.
	.96 kHz (DIM-B); both ±1%.	Unbalanced			
Sinewave Frequency 15	5 kHz (DIM-30 and DIM-100), 14 kHz (DIM-B).		Selectable 600 Ω or 300 Ω, each ±1%, 1 Watt [+30 dBm]	DSP ANALYSIS OF AN	IALOG SIGNALS (SYS-2712 and SYS-2722 only)
Special Purpose Signals	with ontion "RLIR"	Terrinauons	maximum power.	High Decelution Cons	
Sine Burst	wan opaon Bort	Level Meter Related	maximum power.	High Resolution Conv	
Frequency Range20	0 Hz_100 kHz		5 mV-160 V for specified accuracy and flatness, usable	A/D Resolution	
Square Wave	0112-100 KHZ.	weasurement range	to <100 µV.		. 8 ks/s-108 ks/s variable; or 65.536 ks/s fixed.
	011- 00111-	Accuracy (1 kHz)			. ±0.01 dB to 0.45 x SR or 20 kHz, whichever is lower.
Frequency Range20	U HZ-2U KHZ.	Flatness (1 kHz ref)	±0.5% [±0.05 db].	Distortion	. –105 dB for $f_{\rm S}$ ≤65.536 ks/s, –102 dB for $f_{\rm S}$ up to 100 ks/s
Noise Signals			. 0 000 ID ((. ' . II 0 000 ID)	High Bandwidth Conv	ortor
	Sandwidth limited 10 Hz–23 kHz.		±0.008 dB (typically <0.003 dB).	•	
	Sandwidth limited 20 Hz-200 kHz.	15 Hz–50 kHz		A/D Resolution	
	pproximately 1/3-octave (2-pole) filtered pink noise,	10 Hz-120 kHz		Sample Rate (I _S)	 . 16 ks/s-200 ks/s variable; or 131.072 ks/s, or 262.144 ks/ fixed.
	ontinuously tunable from 20 Hz-100 kHz.		+0.2 / -0.3 dB (typically <-0.5 dB at 500 kHz).	Clatages (1 kHz rof)	. ±0.01 dB to 20 kHz, ±0.10 dB to 120 kHz (262.144 ks/s).
	rue random or pseudo-random.	Frequency Meter Rel			. $-92 \text{ dB for } f_s \le 200 \text{ ks/s}, -90 \text{ dB with } f_s = 262.144 \text{ ks/s}.$
	ypically 262 ms (synchronized to the analyzer 4/s	Measurement Range	10 Hz–500 kHz.	Distortion	92 dB 10F 1 _S ≤200 KS/S, -90 dB WIII 1 _S = 202.144 KS/S.
re	eading rate).	Accuracy	±0.0006% [±6 PPM].	FFT Signal Analyzer w	ith "FFT" DSP program
		Resolution	6 digits + 0.000244 Hz.	Acquisition Length	. 800 samples to 4 M samples in 15 steps.
D/A GENERATED ANALO	OG SIGNALS	Minimum Input	5 mV.		. 256–32768 samples in binary steps.
Common Specifications		Phase Measurement	Related	Processing	. , .
Sample Rate		Measurement Ranges .	±180, –90 / +270, or 0 / +360 deg.		. 1–4096 averages in binary steps. Averaging is power-
		Accuracy	,g.	Averaging	based (frequency domain), or synchronous (time domain)
	xed at 65.536 ks/s or 131.072 ks/s.	10 Hz–5 kHz	+0.5 dea	Windows	
	KS/S—108 KS/S Variable, of fixed at 65.536 KS/S of 131.072	5 kHz–20 kHz		TTIII GONO	. Tota dibioco.
		20 kHz–50 kHz			rith "Analyzer" DSP program
	:0.0002% [2 PPM] internal reference, lockable to external reference.			Wideband Level/Ampl	itude
D/A Resolution 24		Wideband Amplitude		Frequency Range	. <10 Hz to 45% of Sample Rate [10 Hz-21.6 kHz at 48 ks/s]
TIT I COULUIUII Z4	T-DIL SIGING UCILA.	Measurement Range	•	High pass Filters	. <10 Hz 4-pole, 22 Hz 4-pole, 100 Hz 4-pole, 400 Hz 4-pol
"OINE (D/A)" O'I F!	ily	Accuracy (1 kHz)	±1.0% [±0.09 dB].		(4-pole Butterworth or 10-pole elliptic if no other filters are
"SINE (D/A)" Signal Famil	0 Hz 20 kHz (CE E2C ka/a) or	Flatness (1 kHz ref)			enabled).
. , , -	U FIZ-3U KFIZ (03.330 KS/S), UI	20 Hz-20 kHz	±0.02 dB.	Low pass Filters	. F _s /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kH
Frequency Ranges 10	0 Hz-60 kHz (131.072 ks/s).	20 112-20 KHZ			
Frequency Ranges 10		15 Hz–50 kHz	±0.05 dB.		(6-pole elliptic).
Frequency Ranges 10 10 Flatness (1 kHz ref)	0 Hz-60 kHz (131.072 ks/s).			Weighting Filters	(6-pole elliptic). . ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per
Frequency Ranges 10 10 Flatness (1 kHz ref) 20 Hz–20 kHz ±	0 Hz-60 kHz (131.072 ks/s). -0.01 dB.	15 Hz–50 kHz			(6-pole elliptic). ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per IEC468 (CCIR), CCIR RMS per AES17, C-message per
Frequency Ranges	0 Hz-60 kHz (131.072 ks/s). -0.01 dB. -0.03 dB.	15 Hz–50 kHz	±0.15 dB. +0.2 dB / –0.3 dB (typically < –3 dB at 500 kHz).		(6-pole elliptic). ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per IEC468 (CCIR), CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. O.41, "F"
Frequency Ranges	0 Hz-60 kHz (131.072 ks/s). -0.01 dB.	15 Hz-50 kHz	±0.15 dB +0.2 dB / –0.3 dB (typically < –3 dB at 500 kHz).		(ő-pole elliptic). ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per IEC488 (CCIR), CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI-
Frequency Ranges	0 Hz-60 kHz (131.072 ks/s). -0.01 dB. -0.03 dB. -0.10 dB (typically –0.5 dB at 60 kHz).	15 Hz-50 kHz	±0.15 dB. +0.2 dB / –0.3 dB (typically < –3 dB at 500 kHz).	Weighting Filters	(ő-pole elliptic). ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per IEC488 (CCIR), CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI-Harmonic weighting.
Frequency Ranges	0 Hz-60 kHz (131.072 ks/s). :0.01 dB. :0.03 dB. :0.10 dB (typically –0.5 dB at 60 kHz).	15 Hz–50 kHz 50 kHz–120 kHz 120 kHz–200 kHz Bandwidth Limiting Filters LF –3 dB	±0.15 dB +0.2 dB / -0.3 dB (typically < -3 dB at 500 kHz) <10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole),	Weighting Filters	(6-pole elliptic). ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk per IEC488 (CCIR), CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting.
Frequency Ranges	0 Hz-60 kHz (131.072 ks/s). :0.01 dB. :0.03 dB. :0.10 dB (typically –0.5 dB at 60 kHz). :0.007% [-103 dB].	15 Hz–50 kHz 50 kHz–120 kHz 120 kHz–200 kHz Bandwidth Limiting Filters LF –3 dB	±0.15 dB. +0.2 dB / -0.3 dB (typically < -3 dB at 500 kHz). <10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole).	Weighting Filters Narrow Band Amplitu Frequency Range	(6-pole elliptic). ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk per IEC488 (CCIR), CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCIT per CCITT Rec. 0.41, 'F' weighting corresponding to 15 phon loudness contour, HI-harmonic weighting. de . <10 Hz to 47% of Sample Rate [10 Hz–22.56 kHz at 48 ks/s
Frequency Ranges	0 Hz-60 kHz (131.072 ks/s). :0.01 dB. :0.03 dB. :0.10 dB (typically -0.5 dB at 60 kHz). :0.007% [-103 dB]. :0.014% [-97 dB]. :dB to -100 dB, usable to -138 dB.	15 Hz–50 kHz	±0.15 dB. +0.2 dB / -0.3 dB (typically < -3 dB at 500 kHz). <10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole). 22 kHz per IEC468 (CCIR), 30 kHz ±5% (3-pole), 80 kHz ±5% (3-pole), or >500 kHz.	Narrow Band Amplitu Frequency Range Filter Shape	(6-pole elliptic). ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk per IEC468 (CCIR), CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, 'F' weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. de <10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s. 10-pole, Q=19 (BW = 5.3% of f ₀).
Frequency Ranges	0 Hz-60 kHz (131.072 ks/s). :0.01 dB. :0.03 dB. :0.10 dB (typically -0.5 dB at 60 kHz). :0.007% [-103 dB]. :0.014% [-97 dB]. :dB to -100 dB, usable to -138 dB.	15 Hz–50 kHz	±0.15 dB. ±0.2 dB / =0.3 dB (typically < =3 dB at 500 kHz). <10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole). 22 kHz per IEC468 (CCIR), 30 kHz ±5% (3-pole), 80 kHz ±5% (3-pole), or >500 kHz. up to 7.	Narrow Band Amplitu Frequency Range Filter Shape THD+N Measurements	(6-pole elliptic). ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk per IEC468 (CCIR), CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, 'F' weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. de -10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s. 10-pole, Q=19 (BW = 5.3% of f ₀).
Trequency Ranges	0 Hz-60 kHz (131.072 ks/s). 0.01 dB. 0.03 dB. 0.010 dB (typically -0.5 dB at 60 kHz). 0.007% [-103 dB]. 0.0014% [-97 dB]. dB to -100 dB, usable to -138 dB. cycles-65536 cycles.	15 Hz–50 kHz	±0.15 dB. ±0.2 dB / =0.3 dB (typically < =3 dB at 500 kHz). <10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole). 22 kHz per IEC468 (CCIR), 30 kHz ±5% (3-pole), 80 kHz ±5% (3-pole), or >500 kHz. up to 7. RMS (τ = 25 ms or 50 ms), Average, QPk per IEC468	Narrow Band Amplitu Frequency Range Filter Shape THD+N Measurements	(6-pole elliptic). ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk per IEC488 (CCIR), CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. de -10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s. 10-pole, Q=19 (BW = 5.3% of f ₀). -<10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s. 10-pole, Q=19 (BW = 5.3% of f ₀).
Trequency Ranges	0 Hz-60 kHz (131.072 ks/s). 0.01 dB. 0.03 dB. 0.010 dB (typically -0.5 dB at 60 kHz). 0.007% [-103 dB]. 0.0014% [-97 dB]. dB to -100 dB, usable to -138 dB. cycles-65536 cycles.	15 Hz–50 kHz	±0.15 dB. ±0.2 dB / =0.3 dB (typically < =3 dB at 500 kHz). <10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole). 22 kHz per IEC468 (CCIR), 30 kHz ±5% (3-pole), 80 kHz ±5% (3-pole), or >500 kHz. up to 7.	Narrow Band Amplitu Frequency Range Filter Shape THD+N Measurements Frequency Range	(6-pole elliptic). ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk per IEC488 (CCIR), CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F' weighting corresponding to 15 phon loudness contour, HI harmonic weighting. de <10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s 10-pole, Q=19 (BW = 5.3% of f ₀). 10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s].
Frequency Ranges	0 Hz-60 kHz (131.072 ks/s). :0.01 dB. :0.03 dB. :0.10 dB (typically -0.5 dB at 60 kHz). :0.007% [-103 dB]. :0.0014% [-97 dB]. :dB to -100 dB, usable to -138 dB. :cycles-65536 cycles.	15 Hz–50 kHz 50 kHz–120 kHz 120 kHz – 200 kHz 120 kHz–200 kHz LF –3 dB Optional Filters Detection Residual Noise	±0.15 dB +0.2 dB / =0.3 dB (typically < =3 dB at 500 kHz). <10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole), 22 kHz per IEC468 (CCIR), 30 kHz ±5% (3-pole), 80 kHz ±5% (3-pole), or >500 kHz up to 7. RMs (τ = 25 ms or 50 ms), Average, QPk per IEC468 (CCIR), Pk (pseudo-peak), or S-Pk (0.7071 *x Pk reading).	Narrow Band Amplitu Frequency Range Filter Shape THD+N Measurements Frequency Range	(©-pole elliptic). ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk per IEC468 (CCIR), CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, 'F' weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. de <10 Hz to 47% of Sample Rate [10 Hz–22.56 kHz at 48 ks/s. 10-pole, Q=19 (BW = 5.3% of f ₀). <10 Hz to 47% of Sample Rate [10 Hz–22.56 kHz at 48 ks/s]. <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz
Transpage	0 Hz-60 kHz (131.072 ks/s). :0.01 dB. :0.03 dB. :0.10 dB (typically -0.5 dB at 60 kHz). :0.007% [-103 dB]. :0.014% [-97 dB]. :dB to -100 dB, usable to -138 dB. :cycles-6556 cycles.	15 Hz–50 kHz	±0.15 dB ±0.2 dB / =0.3 dB (typically < =3 dB at 500 kHz). <10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole) 22 kHz per IEC468 (CCIR), 30 kHz ±5% (3-pole), 80 kHz ±5% (3-pole), or >500 kHz up to 7. RMS (τ = 25 ms or 50 ms), Average, QPk per IEC468 (CCIR), Pk (pseudo-peak), or S-Pk (0.7071 °x Pk reading) ≤1.0 μV [=117.8 dBu].	Narrow Band Amplitu Frequency Range Filter Shape THD+N Measurements Frequency Range High pass Filters	(6-pole elliptic). ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk per IEC488 (CCIR), CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. de -10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s. 10-pole, Q=19 (BW = 5.3% of f _o). -10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s].
Transpage	0 Hz-60 kHz (131.072 ks/s). :0.01 dB. :0.03 dB. :0.10 dB (typically -0.5 dB at 60 kHz). :0.007% [-103 dB]. :0.014% [-97 dB]. :dB to -100 dB, usable to -138 dB. :cycles-6556 cycles.	15 Hz–50 kHz 50 kHz–120 kHz 120 kHz–200 kHz Bandwidth Limiting Filters LF –3 dB Optional Filters Detection Residual Noise 22 Hz–22 kHz BW 80 kHz BW	±0.15 dB ±0.2 dB / =0.3 dB (typically < =3 dB at 500 kHz). <10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole) 22 kHz per IEC468 (CCIR), 30 kHz ±5% (3-pole), 80 kHz ±5% (3-pole), or >500 kHz up to 7. RMS (r = 25 ms or 50 ms), Average, QPk per IEC468 (CCIR), Pk (pseudo-peak), or S-Pk (0.7071 "x Pk reading). ≤1.0 µV [=117.8 dBu] ≤2.0 µV [=111.8 dBu].	Narrow Band Amplitu Frequency Range Filter Shape THD+N Measurements Frequency Range High pass Filters	(Ĝ-pole elliptic). ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk per IEC488 (CCIR), CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F' weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. de <10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s: 10-pole, Q=19 (BW = 5.3% of f₀). <10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s: 10-to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s]. <10 Hz to 47% of Sample Rate [10 Hz-20.56 kHz at 48 ks/s]. <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth). F₅/2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kHz (4-pole might be designed by the control of the con
Transpage	0 Hz-60 kHz (131.072 ks/s). -0.01 dB0.03 dB0.10 dB (typically -0.5 dB at 60 kHz). -0.007% [-103 dB]0.014% [-97 dB]0.014% [-97 dB]0.014% [-97 dB]0.014% [-97 dB]0.015 to -100 dB, usable to -138 dB0.015 to -100 dB, usable to -138 dB.	15 Hz–50 kHz	. ±0.15 dB +0.2 dB / −0.3 dB (typically < −3 dB at 500 kHz). . <10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole) 22 kHz per IEC468 (CCIR), 30 kHz ±5% (3-pole), 80 kHz ±5% (3-pole), or >500 kHz up to 7. . RMS (τ = 25 ms or 50 ms), Average, QPk per IEC468 (CCIR), Pk (pseudo-peak), or S-Pk (0.7071 °x Pk reading). . ≤1.0 µV [−117.8 dBu] ≤2.0 µV [−111.8 dBu] ≤6.0 µV [−103.8 dBu].	Narrow Band Amplitu Frequency Range Filter Shape THD+N Measurements Frequency Range High pass Filters	(Ĝ-pole elliptic). ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk per IEC488 (CCIR), CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, 'F' weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. de <10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s 10-pole, Q=19 (BW = 5.3% of f ₀). 10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s]. 10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth). F ₉ /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kH (6-pole elliptic).
Frequency Ranges	0 Hz-60 kHz (131.072 ks/s). -0.01 dB0.03 dB0.10 dB (typically -0.5 dB at 60 kHz). -0.007% [-103 dB]0.014% [-97 dB]0.014% [-97 dB]0.014% [-97 dB]0.014% [-97 dB]0.015 to -100 dB, usable to -138 dB0.015 to -100 dB, usable to -138 dB.	15 Hz–50 kHz	±0.15 dB ±0.2 dB / =0.3 dB (typically < =3 dB at 500 kHz). <10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole) 22 kHz per IEC468 (CCIR), 30 kHz ±5% (3-pole), 80 kHz ±5% (3-pole), or >500 kHz up to 7. RMS (r = 25 ms or 50 ms), Average, QPk per IEC468 (CCIR), Pk (pseudo-peak), or S-Pk (0.7071 "x Pk reading). ≤1.0 µV [=117.8 dBu] ≤2.0 µV [=111.8 dBu].	Narrow Band Amplitu Frequency Range Filter Shape THD+N Measurements Frequency Range High pass Filters	(6-pole elliptic). ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk per IEC488 (CCIR), CCIR RNS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI-Harmonic weighting. de -10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s. 10-pole, Q=19 (BW = 5.3% of f ₀). -10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s]. -10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth). F _g /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kf-6-pole elliptic). -ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk per
Frequency Ranges	0 Hz-60 kHz (131.072 ks/s). :0.01 dB. :0.03 dB. :0.10 dB (typically -0.5 dB at 60 kHz). :0.007% [-103 dB]. :0.014% [-97 dB]. :dB to -100 dB, usable to -138 dB. :cycles-65536 cycles. y :0 Hz-50 Hz. :00 kHz-50 kHz.	15 Hz–50 kHz 50 kHz–120 kHz 120 kHz–200 kHz 120 kHz–200 kHz Bandwidth Liniting Filters LF –3 dB Optional Filters Detection Residual Noise 22 Hz–22 kHz BW 80 kHz BW 500 kHz BW A-weighted	. ±0.15 dB +0.2 dB / −0.3 dB (typically < −3 dB at 500 kHz). . <10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole) 22 kHz per IEC468 (CCIR), 30 kHz ±5% (3-pole), 80 kHz ±5% (3-pole), or >500 kHz up to 7. . RMS (τ = 25 ms or 50 ms), Average, QPk per IEC468 (CCIR), Pk (pseudo-peak), or S-Pk (0.7071 °x Pk reading). . ≤1.0 µV [−117.8 dBu] ≤2.0 µV [−111.8 dBu] ≤6.0 µV [−103.8 dBu].	Narrow Band Amplitu Frequency Range Filter Shape THD+N Measurements Frequency Range High pass Filters Low pass Filters	(Ĝ-pole elliptic). ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk per IEC488 (CCIR), CCIR RNS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI-Harmonic weighting. de -10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s]. -10-pole, Q=19 (BW = 5.3% of f ₀). -10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s]. -10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole elliptic), 25 Hz (4-pole), 400 Hz (4-pole elliptic), 400 Hz (4-pole elliptic), 400 Hz (6-pole elliptic). -ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per IEC468 (CCIR), CCIR RNS per AES17, C-message per
Frequency Ranges	0 Hz-60 kHz (131.072 ks/s). :0.01 dB. :0.03 dB. :0.10 dB (typically -0.5 dB at 60 kHz). :0.007% [-103 dB]. :0.014% [-97 dB]. :dB to -100 dB, usable to -138 dB. :cycles-65536 cycles. y :0 Hz-50 Hz. :00 kHz-50 kHz.	15 Hz–50 kHz 50 kHz–120 kHz 120 kHz–200 kHz 120 kHz–200 kHz Bandwidth Liniting Filters LF –3 dB Optional Filters Detection Residual Noise 22 Hz–22 kHz BW 80 kHz BW 500 kHz BW A-weighted	. ±0.15 dB ±0.2 dB / =0.3 dB (typically < =3 dB at 500 kHz). . <10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole) 22 kHz per IEC468 (CCIR), 30 kHz ±5% (3-pole), 80 kHz ±5% (3-pole), or >500 kHz up to 7. . RMS (τ = 25 ms or 50 ms), Average, QPk per IEC468 (CCIR), Pk (pseudo-peak), or S-Pk (0.7071 °x Pk reading). . ≤1.0 μV [=117.8 dBu] ≤2.0 μV [=111.8 dBu] ≤2.0 μV [=103.8 dBu] ≤5.5 μV [=123.8 dBu] ≤2.5 μV [=109.8 dBu].	Narrow Band Amplitu Frequency Range Filter Shape THD+N Measurements Frequency Range High pass Filters Low pass Filters	(Ĝ-pole elliptic). ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk per IEC488 (CCIR), CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI-Harmonic weighting. de <10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s 10-pole, Q=19 (BW = 5.3% of f ₀). 10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s 10-pole, Q=19 (BW = 5.3% of f ₀). 110 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth). Fy2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kH (6-pole elliptic). ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk per IEC468 (CCIR), CCIR RMS per AES17, C-message per IEC468 (CCIR), CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F"
Frequency Ranges	0 Hz-60 kHz (131.072 ks/s). :0.01 dB. :0.03 dB. :0.10 dB (typically -0.5 dB at 60 kHz). :0.007% [-103 dB]. :0.014% [-97 dB]. :dB to -100 dB, usable to -138 dB. :cycles-65536 cycles. y :0 Hz-50 Hz. :00 kHz-50 kHz.	15 Hz–50 kHz 50 kHz–120 kHz 120 kHz–200 kHz Bandwidth Limiting Filters LF –3 dB Optional Filters Detection Residual Noise 22 Hz–22 kHz BW 80 kHz BW 500 kHz BW A-weighted CCIR-QPk	. ±0.15 dB +0.2 dB / -0.3 dB (typically < -3 dB at 500 kHz). . <10 Hz, 22 Hz per IEC468 (CCIR), 100 Hz ±5% (3-pole), or 400 Hz ±5% (3-pole) 22 kHz per IEC468 (CCIR), 30 kHz ±5% (3-pole), 80 kHz ±5% (3-pole), or >500 kHz up to 7. . RMS (τ = 25 ms or 50 ms), Average, QPk per IEC468 (CCIR), Pk (pseudo-peak), or S-Pk (0.7071 *x Pk reading) ≤1.0 µV [-117.8 dBu] ≤2.0 µV [-111.8 dBu] ≤0.5 µV [-103.8 dBu] ≤2.5 µV [-109.8 dBu] ≤2.5 µV [-109.8 dBu].	Narrow Band Amplitu Frequency Range Filter Shape THD+N Measurements Frequency Range High pass Filters Low pass Filters	(Ĝ-pole elliptic). ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk per IEC488 (CCIR), CCIR RNS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI-Harmonic weighting. de -10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s]. -10-pole, Q=19 (BW = 5.3% of f ₀). -10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s]. -10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole elliptic), 25 Hz (4-pole), 400 Hz (4-pole elliptic), 400 Hz (4-pole elliptic), 400 Hz (6-pole elliptic). -ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per IEC468 (CCIR), CCIR RNS per AES17, C-message per

Frequency Measurem	ents	Quasi-Anechoic Acou	stical Tester (MLS)
Range	<10 Hz to 47% of Sample Rate [10 Hz–23.0 kHz at 48 ks/s].	Signals	. Four pink sequences, four white sequences
Accuracy	±0.01% of reading or 0.0001% of Sample Rate, whichever	Frequency Range	
	is greater.		32767 samples or 131071 samples.
Resolution	0.003% of reading or 0.0001% of Sample Rate, whichever		ne Waveforms ("Arb Wfm")
	is greater.	Signal	. Determined by the associated file spe
	stical Tester with "MLS" DSP program	Eroguanou Dango	drop-down box.
-	Four pink sequences, four white sequences.	Frequency Range	256 points–16384 points per channel.
	(Sample Rate ÷ 2000) to (Sample Rate ÷ 2).	Lengui	prepare waveform from user specified
Frequency Resolution (Max			tude, and phase data.
Acquisition Length	32767 or 131071 samples.	Frequency Resolution	Sample Rate + Length [2.93 Hz at 48
Multitone Audio Analy	rzer with "FASTTEST" DSP program		16384 points in length].
Measurements	Level vs frequency (Response), Total distortion vs frequen-		s (Length / 2) –1 [8191 for Length = 1638
	cy, Noise vs frequency, Phase vs frequency, Crosstalk vs	Dither	
F	frequency, Masking curve.	Probability Distribution	. Triangular or rectangular; pseudo rano
Frequency Resolution	(Sample Rate ÷ Transform Length) [1.465 Hz with f _s = 48 ks/s & Transform Length = 32768].	Spectral Distribution	each channel. . Flat (white) or Shaped (+6 dB/oct).
Distortion	· .	Amplitude	
Distortion	<u>3</u> –110 db.	Pre-Emphasis Filters	
DIGITAL SIGNAL GEN	IERATOR (SYS-2720 and SYS-2722 only)	Filter Shape	
DIGITAL SIGNAL GEN	ERATOR (373-2720 and 373-2722 only)		±0.02 dB, 10 Hz to 45% of Sample Ra
Interface Signal Chara		Residual Distortion	
Output Formats	Balanced XLR (AES/EBU per AES3-r1997), Dual		,
	Connector XLR, Unbalanced BNC (SPDIF-EIAJ per IEC-	DIGITAL ANALYZER (SYS-2720 and SYS-2722 only)
	60958), Dual Connector BNC, Optical (Toslink®) per IEC- 60958, General purpose parallel, or Serial interface to chip		
	via optional PSIA-2722.	Digital Interface Signa	
Sample Rate ("SR")		input Sample Rate	 . 8 kHz–200 kHz, ±0.0003% [±3 PPM] ence, ±0.0001% [±1 PPM] external re
	28 kHz-200 kHz for full functionality. Usable down to 8	Input Amplitude	5.155, ±0.000 170 [±111 m] GARGITIALIE
5 10	kHz with unspecified performance below 28 kHz.		0 Vpp-10.00 Vpp, ±(5% + 25 mV).
Resolution			0 Vpp–2.5 Vpp, ±(5% + 6 mV).
	±0.0002% [±2 PPM], lockable to external reference.	. ,	Displays output voltage of Toslink® rec
Output Impedance		орион	related to optical input power).
Balanced (XLR)		Output to Input Delay	. Measures propagation from the rear p
Unbalanced (BNC)	Nominally 75 Ω		Reference Output to the input.
Embedded Signal Gen	eration Encoding is selectable 8–24 bit Linear, μ-Law, or A-Law	Range	12.7 to +115.1 UI [-10% to +90% of
	Characteristics (all sine wave variants)		60 ns resolution.
Frequency Range	10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s].	Digital Interface Analy	zer with "INTERVU" DSP program
Frequency Resolution	Sample Rate ÷ 223 [0.006 Hz at 48 ks/s].	AES/EBU Input Voltage	
Flatness	±0.001 dB.	Balanced	0 Vpp–10.00 Vpp, ±(10% + 50 mV).
	s ≤0.000001% [-160 dB].		0 Vpp–2.5 Vpp, ±(8% + 12 mV).
Variable Phase Sine V	Nave		. 0 Vpp–2.5 Vpp, ±(8% + 12 mV). . 19.66 ms / 1,572,864 samples.
Variable Phase Sine V	Nave	Acquisition time / memory	
Variable Phase Sine V Phase Range Sine + Offset	Nave ±180 deg.	Acquisition time / memory	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro
Variable Phase Sine Variable Phase Range Sine + Offset Offset Amplitude	Nave ±180 deg Sine amplitude + offset amplitude ≤100% F _s .	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro
Variable Phase Sine Variable Range Sine + Offset Offset Amplitude Sine Burst and Shape	Wave ±180 deg Sine amplitude + offset amplitude ≤100% F _s d Sine Burst	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro itude 120 dBF _s to 0 dBF _s (usable to -140 10 Hz to 45.8% of Sample Rate, [10 Hz-
Variable Phase Sine V Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval	Nave ±180 deg. Sine amplitude + offset amplitude ≤100% F _s . d Sine Burst 2 cycles-65536 cycles.	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro litude120 dBF ₈ to 0 dBF ₈ (usable to -140 . 10 Hz to 45.8% of Sample Rate, [10 Hz- 44.1 ks/s], [10 Hz-220 kHz at 48 ks/s], [
Variable Phase Sine V Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On	Wave ±180 deg Sine amplitude + offset amplitude ≤100% F _s d Sine Burst	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range Frequency Range	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro litude120 dBF _s to 0 dBF _s (usable to -14010 Hz to 45.8% of Sample Rate, [10 Hz-44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s].
Variable Phase Sine V Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave	Nave±180 deg. Sine amplitude + offset amplitude ≤100% F _s . Sine Burst 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1).	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range Frequency Range Accuracy	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro litude . —120 dBF _s to 0 dBF _s (usable to –140 . 10 Hz to 45.8% of Sample Rate, [10 Hz-44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s], . ±0.01 dB.
Variable Phase Sine N Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave	Nave±180 degSine amplitude + offset amplitude ≤100% F _s . ed Sine Burst2 cycles-65536 cycles1 to (number of Interval cycles minus 1)≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range Frequency Range Accuracy	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro litude120 dBF ₈ to 0 dBF ₈ (usable to -140 10 Hz to 45.8% of Sample Rate, [10 Hz- 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s] ±0.01 dB, 15 Hz-22 kHz (<10 Hz high
Variable Phase Sine N Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave	Nave . ±180 deg Sine amplitude + offset amplitude ≤100% F _s . d Sine Burst . 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1) ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range Frequency Range Accuracy Flatness	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro litude –120 dBF ₈ to 0 dBF ₈ (usable to –140 . 10 Hz to 45.8% of Sample Rate, [10 Hz- 44.1 ks/s], [10 Hz–22.0 kHz at 48 ks/s], [96 ks/s], . ±0.01 dB, . ±0.01 dB, 15 Hz–22 kHz (<10 Hz high selection).
Variable Phase Sine N Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range SMPTE/DIN Waveform	Nave . ±180 deg Sine amplitude + offset amplitude ≤100% F _s . dd Sine Burst . 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1) ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range Frequency Range Accuracy Flatness	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro litude120 dBF ₈ to 0 dBF ₈ (usable to -140 10 Hz to 45.8% of Sample Rate, [10 Hz- 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s] ±0.01 dB, 15 Hz-22 kHz (<10 Hz high
Variable Phase Sine N Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range SMPTE/DIN Waveform	Nave±180 degSine amplitude + offset amplitude ≤100% F _s . dd Sine Burst2 cycles-65536 cycles1 to (number of Interval cycles minus 1). ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. 12 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s].	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range Frequency Range Accuracy Flatness High pass Filters	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro litude120 dBF ₈ to 0 dBF ₈ (usable to -140110 Hz to 45.8% of Sample Rate, [10 Hz- 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s] ±0.01 dB ±0.01 dB ±0.01 dB +10.01 dB, 15 Hz-22 kHz (<10 Hz high selection) <10 Hz (4-pole), 22 Hz (4-pole), 100 F (4-pole Butterworth, or 10-pole elliptic enabled).
Variable Phase Sine N Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range SMPTE/DIN Waveform Upper Tone Range	Nave±180 degSine amplitude + offset amplitude ≤100% F _s . ed Sine Burst2 cycles-65536 cycles1 to (number of Interval cycles minus 1)≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. 1. kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s]40 Hz-500 Hz.	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range Frequency Range Accuracy Flatness High pass Filters	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro itude120 dBF ₈ to 0 dBF ₈ (usable to -140 . 10 Hz to 45.8% of Sample Rate, [10 Hz- 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s] ±0.01 dB, . ±0.01 dB, 15 Hz-22 kHz (<10 Hz high selection)<10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole Butterworth, or 10-pole elliptic enabled) Fg/2 (maximum bandwidth), 20 kHz (6
Variable Phase Sine N Phase Range Sine N Phase Range Sine Hoffset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range SMPTE/DIN Waveform Lower Tone Range CCIF and DFD IMD W	Nave±180 degSine amplitude + offset amplitude ≤100% F _s . ed Sine Burst2 cycles-65536 cycles1 to (number of Interval cycles minus 1)≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. 1. kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s]40 Hz-500 Hz.	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range Frequency Range Accuracy Flatness High pass Filters Low pass Filters	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro litude120 dBF ₈ to 0 dBF ₈ (usable to -140 . 10 Hz to 45.8% of Sample Rate, [10 Hz- 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s], ±0.01 dB, 15 Hz-22 kHz (<10 Hz high selection), . <10 Hz (4-pole), 22 Hz (4-pole), 100 H (4-pole Butterworth, or 10-pole elliptic enabled) F _g /2 (maximum bandwidth), 20 kHz (6
Variable Phase Sine N Phase Range Sine N Phase Range Sine Hoffset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range SMPTE/DIN Waveform Lower Tone Range CCIF and DFD IMD W	Nave . ±180 deg ∴ £180 deg Sine amplitude + offset amplitude ≤100% F _s . d Sine Burst 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1) ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. 1 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 40 Hz-500 Hz. aveforms 3.00 kHz to (47% of Sample Rate –1/2 IM freq.).	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range Frequency Range Accuracy Flatness High pass Filters Low pass Filters	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro litude120 dBF ₈ to 0 dBF ₈ (usable to -140120 dBF ₈ to 6 Sample Rate, [10 Hz- 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s] ±0.01 dB ±0.01 dB ±0.01 dB, 15 Hz-22 kHz (<10 Hz high selection) <10 Hz (4-pole), 22 Hz (4-pole), 100 H (4-pole Butterworth, or 10-pole elliptic enabled) Fg/2 (maximum bandwidth), 20 kHz (6 6-pole elliptic) ANISI-IEC "A" weighting, per IEC Rec
Variable Phase Sine V Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range SMPTE/DIN Waveform Upper Tone Range CCIF and DFD IMD W. Center Frequency Range	Nave . ±180 deg ∴ £180 deg Sine amplitude + offset amplitude ≤100% F _s . d Sine Burst 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1) ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. 1 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 40 Hz-500 Hz. aveforms 3.00 kHz to (47% of Sample Rate –1/2 IM freq.).	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range Frequency Range Accuracy Flatness High pass Filters Low pass Filters	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro litude120 dBF ₈ to 0 dBF ₈ (usable to -140 . 10 Hz to 45.8% of Sample Rate, [10 Hz- 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s], ±0.01 dB, 15 Hz-22 kHz (<10 Hz high selection), . <10 Hz (4-pole), 22 Hz (4-pole), 100 H (4-pole Butterworth, or 10-pole elliptic enabled) F _g /2 (maximum bandwidth), 20 kHz (6
Variable Phase Sine V Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range SMPTE/DIN Waveform Upper Tone Range Lower Tone Range CCIF and DFD IMD W: Center Frequency Range DIM IMD Waveform	Nave . ±180 deg ∴ £180 deg Sine amplitude + offset amplitude ≤100% F _s . d Sine Burst 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1) ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. 1 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 40 Hz-500 Hz. aveforms 3.00 kHz to (47% of Sample Rate –1/2 IM freq.).	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range Frequency Range Accuracy Flatness High pass Filters Low pass Filters	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro litude120 dBF ₈ to 0 dBF ₈ (usable to -140120 dBF ₈ to 5 dBF ₈ (usable to -14010 Hz to 45.8% of Sample Rate, [10 Hz- 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s] ±0.01 dB ±0.01 dB ±0.01 dB ±0.01 dB +0.01 dB +0.01 dB +10.01 dB
Variable Phase Sine V Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range Lower Tone Range Lower Tone Range Lower Tone Range MF requency Range IM Frequency Range	Nave±180 deg£180 degSine amplitude + offset amplitude ≤100% F _s d Sine Burst2 cycles-65536 cycles1 to (number of Interval cycles minus 1)≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate 1. 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s]40 Hz-500 Hz. aveforms 3.00 kHz to (47% of Sample Rate -1/2 IM freq.)80 Hz-2.00 kHzDetermined by Sample Rate	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range Frequency Range Accuracy Flatness High pass Filters Low pass Filters Weighting Filters	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro litude 10 dBF ₈ to 0 dBF ₈ (usable to -140 10 Hz to 45.8% of Sample Rate, [10 Hz- 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s] ±0.01 dB, 15 Hz-22 kHz (<10 Hz high selection) <10 Hz (4-pole), 22 Hz (4-pole), 100 H (4-pole Butterworth, or 10-pole elliptic enabled) + f ₈ /2 (maximum bandwidth), 20 kHz (6 (6-pole elliptic) ANSI-IEC "A" weighting, per IEC Rec CCIR Rec. 468, CCIR RMS per AES1 IEEE Std 743-1978, CCITT per CCITT
Variable Phase Sine V Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range COIF and DFD IMD W Center Frequency Range IM Frequency Range DIM IMD Waveform Square Sine Frequencies Distortion/Spurious	Nave±180 deg£180 degSine amplitude + offset amplitude ≤100% F _s d Sine Burst2 cycles-65536 cycles1 to (number of Interval cycles minus 1)≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate 1. 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s]40 Hz-500 Hz. aveforms 3.00 kHz to (47% of Sample Rate -1/2 IM freq.)80 Hz-2.00 kHzDetermined by Sample Rate	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range Frequency Range Accuracy Flatness High pass Filters Low pass Filters Weighting Filters	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro litude 120 dBF ₈ to 0 dBF ₈ (usable to -140 101 Hz to 45.8% of Sample Rate, [10 Hz- 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s] ±0.01 dB, 15 Hz-22 kHz (<10 Hz high selection) <10 Hz (4-pole), 22 Hz (4-pole), 100 H (4-pole Butterworth, or 10-pole elliptic enabled) F _g /2 (maximum bandwidth), 20 kHz (6 (6-pole elliptic) ANSI-IEC "A" weighting, per IEC Rec CCIR Rec. 468, CCIR RMS per AES1 IEEE Std 743-1978, CCITT per CCITT weighting corresponding to 15 phon to Harmonic weighting.
Variable Phase Sine V Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range COIF and DFD IMD W Center Frequency Range IM Frequency Range DIM IMD Waveform Square Sine Frequencies Distortion/Spurious	Nave±180 deg£180 degSine amplitude + offset amplitude ≤100% F _s . ed Sine Burst2 cycles-65536 cycles1 to (number of Interval cycles minus 1)≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. 1. 2. kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s]40 Hz-500 Hz. aveforms 3.00 kHz to (47% of Sample Rate –1/2 IM freq.)80 Hz-2.00 kHz50 Letermined by Sample Rate≤0.000001% [-160 dB].	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range Frequency Range Accuracy Flatness High pass Filters Low pass Filters Weighting Filters	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro litude120 dBF ₈ to 0 dBF ₈ (usable to -140120 dBF ₈ to 5 dBF ₈ (usable to -14010 Hz to 45.8% of Sample Rate, [10 Hz- 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s] . ±0.01 dB ±0.01 dB. 15.01 dB. 15.02 dB, 15 Hz-22 kHz (<10 Hz high selection) <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole Butterworth, or 10-pole elliptic enabled) Fg/2 (maximum bandwidth), 20 kHz (6 (6-pole elliptic) ANSI-IEC "A" weighting, per IEC Rec. CCIR Rec. 468, CCIR RMS per AES1 IEEE Std 743-1978, CCITT per CEITI weighting corresponding to 15 phon to Harmonic weighting141 dBF ₈ unweighted,
Variable Phase Sine Ne Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range Lower Tone Range Lower Tone Range Lower Tone Range MFrequency Range IM Frequency Range IM Frequency Range JIM IMD Waveform Square Frequencies Diaristinning Frequencies Amplitude Ratio Noise	Nave±180 deg£180 degSine amplitude + offset amplitude ≤100% F _s . ed Sine Burst2 cycles-65536 cycles1 to (number of Interval cycles minus 1)≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. 1. 2. kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s]40 Hz-500 Hz. aveforms 3.00 kHz to (47% of Sample Rate –1/2 IM freq.)80 Hz-2.00 kHz50 Letermined by Sample Rate≤0.000001% [-160 dB].	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range Frequency Range Accuracy Flatness High pass Filters Low pass Filters Weighting Filters	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro itude120 dBF ₅ to 0 dBF ₅ (usable to -140120 dBF ₅ to 0 dBF ₅ (usable to -140120 dBF ₅ to 0 dBF ₅ (usable to -140140 Hz to 45.8% of Sample Rate, [10 Hz- 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s] ±0.01 dB, 15 Hz-22 kHz (<10 Hz high selection)10 hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole Butterworth, or 10-pole elliptic enabled) F _g /2 (maximum bandwidth), 20 kHz (6 (6-pole elliptic) ANSI-IEC "A" weighting, per IEC Rec CCIR Rec. 468, CCIR RMS per AES1 IEEE Sid 743-1978, CCITT per CCIT weighting corresponding to 15 phon to Harmonic weighting141 dBF ₅ unweighted,144 dBF ₅ A-weighted,
Variable Phase Sine Ne Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range Lower Tone Range Lower Tone Range Lower Tone Range MFrequency Range IM Frequency Range IM Frequency Range JIM IMD Waveform Square Frequencies Diaristinning Frequencies Amplitude Ratio Noise	Nave±180 deg±180 degSine amplitude + offset amplitude ≤100% F _s . ed Sine Burst2 cycles-65536 cycles1 to (number of Interval cycles minus 1)≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. 12 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s]40 Hz-500 Hz. aveforms 3.00 kHz to (47% of Sample Rate –1/2 IM freq.)80 Hz-2.00 kHz20 Letermined by Sample Rate≤0.000001% [-160 dB]41 (squarewave:sinewave).	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range Frequency Range Accuracy Flatness High pass Filters Low pass Filters Weighting Filters	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro itude120 dBF ₈ to 0 dBF ₈ (usable to -140120 dBF ₈ to 5 dBF ₈ (usable to -14010 Hz to 45.8% of Sample Rate, [10 Hz- 44.1 kss], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s] ±0.01 dB ±0.01 dB, 15 Hz-22 kHz (<10 Hz high selection) <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole Butterworth, or 10-pole elliptic enabled) F ₂ /2 (maximum bandwidth), 20 kHz (6 (6-pole elliptic) TS-12 (maximum bandwidth), 20 kHz (6 epole elliptic) . TS-12 (maximum bandwidth), 20 kHz (6 epole elliptic) . TS-13 (ASS-12-12-12-12-12-12-12-12-12-12-12-12-12-
Variable Phase Sine V Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range Lower Tone Range Lower Tone Range CCIF and DFD IMD W Center Frequency Range IM Frequency Range IM Frequency Range DIM IMD Waveform Square/Sine Frequencies Distortion/Spurious Amplitude Ratio Noise Types Special Signals	Nave±180 deg±180 degSine amplitude + offset amplitude ≤100% F _s . ed Sine Burst2 cycles-65536 cycles1 to (number of Interval cycles minus 1)≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. 12 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s]40 Hz-500 Hz. aveforms 3.00 kHz to (47% of Sample Rate –1/2 IM freq.)80 Hz-2.00 kHz20 Letermined by Sample Rate≤0.000001% [-160 dB]41 (squarewave:sinewave).	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range Frequency Range Accuracy Flatness High pass Filters Low pass Filters Weighting Filters	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro litude 120 dBF ₈ to 0 dBF ₈ (usable to -140 10 Hz to 45.8% of Sample Rate, [10 Hz- 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s] ±0.01 dB, 15 Hz-22 kHz (4 14 ks/s), [1.0.01 dB, 15 Hz-22 kHz (4-pole), 100 Hz (4-pole Butterworth, or 10-pole elliptic enabled) + (10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (6-pole elliptic) ANSI-IEC "A" weighting, per IEC Rec. CIRR Rec. 488. CCIR RNS per AES1 IEEE Std 743-1978, CCITT per CCITT weighting corresponding to 15 phon to Harmonic weighting 141 dBF ₈ unweighted, 140 dBF ₈ CCIR RMS, 130 dBF ₈ CCIR RMS, 142 dBF ₈ 20 kHz LP,
Variable Phase Sine V Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range Lower Tone Range CCIF and DFD IMD W Center Frequency Range IM Frequency Range IM Frequency Range Square Sine Frequencies Distortion/Spurious Amplitude Ratio Noise Types Special Signals Monotonicity	Nave ±180 deg. Sine amplitude + offset amplitude ≤100% F _s . ded Sine Burst 2 cycles-65536 cycles. 1 to (number of Interval cycles minus 1). ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. 1∠4 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s]. 40 Hz-500 Hz. aveforms 3.00 kHz to (47% of Sample Rate −1/2 lM freq.). 80 Hz-2.00 kHz. Determined by Sample Rate ≤0.000001% [-160 dB]. 4:1 (squarewave:sinewave). Pink, White, Burst, USASI. Low level staticase waveform for D/A linearity testing. Produces a maximum amount of data-induced jitter on low-	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range Frequency Range Accuracy Flatness High pass Filters Low pass Filters Weighting Filters	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro itude120 dBF ₈ to 0 dBF ₈ (usable to -140120 dBF ₈ to 0 dBF ₈ (usable to -14010 Hz to 45.8% of Sample Rate, [10 Hz- 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s] ±0.01 dB, 15 Hz-22 kHz (<10 Hz high selection)10.1 dB, 15 Hz-22 kHz (<10 Hz high selection) <10 Hz (4-pole), 22 Hz (4-pole), 100 H (4-pole Butterworth, or 10-pole elliptic enabled) F ₈ /2 (maximum bandwidth), 20 kHz (6 (6-pole elliptic) ANSI-IEC "A" weighting, per IEC Rec CCIR Rec. 468, CCIR RMS per AES1 IEEE Std "A3-1978, CCITT per CCITT weighting corresponding to 15 phon to Harmonic weighting141 dBF ₈ unweighted, -144 dBF ₈ A weighted, -140 dBF ₈ CCIR RMS, -130 dBF ₈ CCIR RMS, -130 dBF ₈ CCIR RMS, -140 dBF ₈ CCIR RMS, -140 dBF ₈ CCIR RMS, -140 dBF ₈ TO KHz LP, -141 dBF ₉ 15 kHz LP,
Variable Phase Sine V Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range Lower Tone Range Lower Tone Range CGIF and DFD IMD W Centler Frequency Range IM Frequency Range IM Frequency Range DIM IMD Waveform Square/Sine Frequencies Distortion/Spurious Amplitude Ratio Noise Types Special Signals Monotonicity J-Test	Nave±180 deg±180 degSine amplitude + offset amplitude ≤100% F _s d Sine Burst2 cycles-65536 cycles1 to (number of Interval cycles minus 1)≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate 1 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s]40 Hz-500 Hz. aveforms 3.00 kHz to (47% of Sample Rate -1/2 lM freq.)80 Hz-2.00 kHzDetermined by Sample Rate≤0.000001% [-160 dB]4:1 (squarewave.sinewave)Pink, White, Burst, USASILow level staircase waveform for D/A linearity testingProduces a maximum amount of data-induced jitter on low-bandwidth transmission links.	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range Frequency Range Accuracy Flatness High pass Filters Low pass Filters Weighting Filters	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro itude120 dBF ₈ to 0 dBF ₈ (usable to -140 10 Hz to 45.8% of Sample Rate, [10 Hz- 44 1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s] ±0.01 dB, 15 Hz-22 kHz (<10 Hz high selection) <10 Hz (4-pole), 22 Hz (4-pole), 100 H (4-pole Butterworth, or 10-pole elliptic enabled) T-g/2 (maximum bandwidth), 20 kHz (6 (6-pole elliptic) T-g/2 (maximum bandwidth), 20 kHz (6 -pole elliptic) T
Variable Phase Sine V Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range Lower Tone Range COFF and DFD IMD W Center Frequency Range IM Frequency Range IM Frequency Range IM Frequency Range IM Frequency Range Topin IMD Waveform Square/Sine Frequencies Distortion/Spurious Amplitude Ratio Noise Types Special Signals Monotonicity J-Test	Nave±180 deg±180 degSine amplitude + offset amplitude ≤100% F _s d Sine Burst2 cycles-65536 cycles1 to (number of Interval cycles minus 1)≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s]40 Hz-500 Hz. aveforms 3.00 kHz to (47% of Sample Rate -1/2 IM freq.)80 Hz-2.00 kHzDetermined by Sample Rate≤0.000001% [-160 dB]4:1 (squarewave:sinewave)Pink, White, Burst, USASILow level staircase waveform for D/A linearity testingProduces a maximum amount of data-induced jitter on low-bandwidth transmission linksTwo sinewaves phased for reinforcement with normal polarity.	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range Frequency Range Accuracy Flatness High pass Filters Low pass Filters Weighting Filters Residual Noise (at 48 ks/s and 96 ks/s f _s)	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro litude120 dBF ₈ to 0 dBF ₈ (usable to -140120 dBF ₈ to 0 dBF ₈ (usable to -140120 dBF ₈ to 0 dBF ₈ (usable to -14010 Hz to 45.8% of Sample Rate, [10 Hz- 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s] ±0.01 dB, 15 Hz-22 kHz (<10 Hz high selection) <10 Hz (4-pole), 22 Hz (4-pole), 100 H (4-pole Butterworth, or 10-pole elliptic enabled) F ₉ /2 (maximum bandwidth), 20 kHz (6 (6-pole elliptic) ANSI-IEC "A" weighting, per IEC Rec CCIR Rec. 488, CCIR RNS per AES1 IEEE Sid 743-1978, CCITT per CCITT weighting corresponding to 15 phon to Harmonic weighted, -140 dBF ₈ CCIR RMS, -130 dBF ₈ CCIR RMS, -130 dBF ₈ CCIR RMS, -140 dBF ₈ CCIR RMS, -140 dBF ₈ CCIR RMS, -141 dBF ₈ 15 kHz LP, -143 dBF ₈ 15 kHz LP, -143 dBF ₈ 15 kHz LP, -143 dBF ₈ C Message.
Variable Phase Sine Name Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range SMPTE/DIN Waveform Upper Tone Range Lower Tone Range CCIF and DFD IMD W Center Frequency Range IM Frequency Range MIND Waveform Square/Sine Frequencies Amplitude Ratio Noise Types Special Signals Monotonicity J-Test Polarity Walking Ones	Nave±180 deg±180 degSine amplitude + offset amplitude ≤100% F _s . ed Sine Burst2 cycles-65536 cycles1 to (number of Interval cycles minus 1)≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. 1≥4 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s]40 Hz-500 Hz. aveforms300 kHz to (47% of Sample Rate −1/2 IM freq.)80 Hz-2.00 kHzDetermined by Sample Rate≤0.000001% [-160 dB]4.1 (squarewave:sinewave)Pink, White, Burst, USASILow level staircase waveform for D/A linearity testingProduces a maximum amount of data-induced jitter on low-bandwidth transmission linksTwo sinewaves phased for reinforcement with normal polarityA single binary one value "walked" from LSB to MSB.	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro itude120 dBF ₈ to 0 dBF ₈ (usable to -140120 dBF ₈ to 0 dBF ₈ (usable to -14010 Hz to 45.8% of Sample Rate, [10 Hz- 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s] ±0.01 dB, 15 Hz-22 kHz (<10 Hz high selection)10 Hz (4-pole), 22 Hz (4-pole), 100 H (4-pole Butterworth, or 10-pole elliptic enabled) F ₈ /2 (maximum bandwidth), 20 kHz (6 (6-pole elliptic) ANSH-EC "A" weighting, per IEC Rec CCIR Rec. 468, CCIR RNIS per AES1 IEEE Std "74-1978, CCITT per CCITT weighting corresponding to 15 phon to Harmonic weighted, -144 dBF ₈ A-weighted, -144 dBF ₈ CCIR RNIS, -130 dBF ₈ CCIR RNIS, -130 dBF ₈ CCIR RNIS, -130 dBF ₈ SCIR CDR, -143 dBF ₈ 15 kHz LP, -143 dBF ₈ 15 kHz LP, -143 dBF ₈ C Message. de
Variable Phase Sine Nanas Sine Nanas Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range Lower Tone Range Lower Tone Range Lower Tone Range M Frequency Range IM Frequency Range IM Frequency Range Square Manas Square Manas Square Square Square IM Frequency Range IM Frequency Range IM Frequency Range Square	Nave ±180 deg. £180 deg. Sine amplitude + offset amplitude ≤100% F _s . d Sine Burst 2 cycles-65536 cycles. 1 to (number of Interval cycles minus 1). ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. 12 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s]. 40 Hz-500 Hz. aveforms 3.00 kHz to (47% of Sample Rate −1/2 lM freq.). 80 Hz-2.00 kHz. Determined by Sample Rate ≤0.000001% [-160 dB]. 41 (squarewave:sinewave). Pink, White, Burst, USASI. Low level staticase waveform for D/A linearity testing. Produces a maximum amount of data-induced jitter on low-bandwidth transmission links. Two sinewaves phased for reinforcement with normal polarity. A single binary one value "walked" from LSB to MSB.	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro litude120 dBF ₈ to 0 dBF ₈ (usable to -140120 dBF ₈ to 0 dBF ₈ (usable to -140120 dBF ₈ to 0 dBF ₈ (usable to -14010 Hz to 45.8% of Sample Rate, [10 Hz- 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s] ±0.01 dB, 15 Hz-22 kHz (<10 Hz high selection) <10 Hz (4-pole), 22 Hz (4-pole), 100 H (4-pole Butterworth, or 10-pole elliptic enabled) F ₉ /2 (maximum bandwidth), 20 kHz (6 (6-pole elliptic) ANSI-IEC "A" weighting, per IEC Rec CCIR Rec. 488, CCIR RNS per AES1 IEEE Sid 743-1978, CCITT per CCITT weighting corresponding to 15 phon to Harmonic weighted, -140 dBF ₈ CCIR RMS, -130 dBF ₈ CCIR RMS, -130 dBF ₈ CCIR RMS, -140 dBF ₈ CCIR RMS, -140 dBF ₈ CCIR RMS, -141 dBF ₈ 15 kHz LP, -143 dBF ₈ 15 kHz LP, -143 dBF ₈ 15 kHz LP, -143 dBF ₈ C Message.
Variable Phase Sine V Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range Lower Tone Range Distortion/Spurious Amplitude Ratio Noise Types Special Signals Monotonicity J-Test Walking Ones Walking Geros Constant Value (Digital do Constant Value (D	Nave±180 deg±180 degSine amplitude + offset amplitude ≤100% F _s . ed Sine Burst2 cycles-65536 cycles1 to (number of Interval cycles minus 1)≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. 1. Let Var% of Sample Rate [22.56 kHz at 48 ks/s]40 Hz-500 Hz. aveforms 3.00 kHz to (47% of Sample Rate −1/2 lM freq.)80 Hz-2.00 kHz. Determined by Sample Rate≤0.00001% [−160 dB]4:1 (squarewave:sinewave)Pink, White, Burst, USASILow level staircase waveform for D/A linearity testingProduces a maximum amount of data-induced jitter on low-bandwidth transmission linksTwo sinewaves phased for reinforcement with normal polarityA single binary one value "walked" from LSB to MSBA single binary zero value "walked" from LSB to MSBA single binary zero value "walked" from LSB to MSB3 bit resolution when using triangular dither.	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro itude120 dBF ₈ to 0 dBF ₈ (usable to -140120 dBF ₈ to 0 dBF ₈ (usable to -14010 Hz to 45.8% of Sample Rate, [10 Hz- 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s] ±0.01 dB, 15 Hz-22 kHz (<10 Hz high selection) ±0.01 dB, 15 Hz-22 kHz (<10 Hz high selection), . <10 Hz (4-pole), 22 Hz (4-pole), 100 H (4-pole Butterworth, or 10-pole elliptic enabled) F ₈ /2 (maximum bandwidth), 20 kHz (6 (6-pole elliptic) ANSI-IEC "A" weighting, per IEC Rec CCIR Rec. 468, CCIR RNIS per AES1 IEEE Std "74.9198, CCITT per CCITT weighting corresponding to 15 phon to Harmonic weighting141 dBF ₈ unweighted, -144 dBF ₈ A-weighted, -144 dBF ₈ CCIR CPK, -130 dBF ₈ CCIR CPK, -130 dBF ₈ CCIR CPK, -131 dBF ₈ CCIR CPK, -131 dBF ₈ TS kHz LP, -139 dBF ₈ "F" weighting, -152 dBF ₈ C -151 dBF ₈ C Message. de 10 Hz to 40% of Sample Rate, [10 Hz-17.6 kHz at 44.1 ks/s], [10 Hz-19.2 kHz at 48 ks/s],
Variable Phase Sine Name Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range SMPTE/DIN Waveform Upper Tone Range Lower Tone Range CGIF and DFD IMD W. Centler Frequency Range IM Frequency Range IM Frequency Range IM Frequency Range Signare/Sine Frequencies Distortion/Spurious Amplitude Ratio Noise Types Special Signals Monotonicity J-Test Walking Ones Walking Ones Walking Ones Constant Value (Digital de Random (Bittest)	Nave±180 deg±180 degSine amplitude + offset amplitude ≤100% F _s d Sine Burst2 cycles-65536 cycles1 to (number of Interval cycles minus 1)≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate 1 Hz to 1/6 Sample Rate [22.56 kHz at 48 ks/s]40 Hz-500 Hz. aveforms 3.00 kHz to (47% of Sample Rate -1/2 IM freq.)80 Hz-2.00 kHz Determined by Sample Rate≤0.000001% [-160 dB]4:1 (squarewave.sinewave)Pink, White, Burst, USASILow level staircase waveform for D/A linearity testingProduces a maximum amount of data-induced jitter on low-bandwith transmission linksTwo sinewaves phased for reinforcement with normal polarityA single binary zero value 'walked' from LSB to MSBA single binary zero value 'walked' from LSB to MSBA single binary zero value 'walked' from LSB to MSBPseudo-random binary states of all bits.	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range Frequency Range Accuracy Flatness High pass Filters Low pass Filters Weighting Filters Residual Noise (at 48 ks/s and 96 ks/s f _s) Narrow Band Amplitus Frequency Range	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro itude120 dBF ₈ to 0 dBF ₈ (usable to -14010 Hz to 45.8% of Sample Rate, [10 Hz- 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s] ±0.01 dB, 15 Hz-22 kHz (<10 Hz high selection) +10 Hz (4-pole), 22 Hz (4-pole), 100 H (4-pole Butterworth, or 10-pole elliptic enabled) Fg/2 (maximum bandwidth), 20 kHz (6 (6-pole elliptic) ANSI-IEC "A" weighting, per IEC Rec CCIR Rec. 468, CCIR RMS per AES1 EEE Std "A3-1978, CCITT per CCITI weighting corresponding to 15 phon to Harmonic weighting141 dBF ₈ unweighted, -144 dBF ₈ A-weighted, -140 dBF ₆ CCIR RMS, -130 dBF ₈ CCIR QPk, -142 dBF ₈ 15 kHz LP, -139 dBF ₈ "F" weighting, -152 dBF ₈ C -151 dBF ₈ C Message. de 10 Hz to 40% of Sample Rate, [10 Hz-17.6 kHz at 44.1 ks/s], [10 Hz-18.8 kHz at 48 ks/s], [10 Hz-38.4 kHz at 96 ks/s].
Variable Phase Sine V Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range Lower Tone Range Lower Tone Range Lower Tone Range M Frequency Range M Range	Nave ±180 deg. £180 deg. Sine amplitude + offset amplitude ≤100% F _s . d Sine Burst 2 cycles-65536 cycles. 1 to (number of Interval cycles minus 1). ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. 12 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s]. 40 Hz-500 Hz. aveforms 3.00 kHz to (47% of Sample Rate −1/2 IM freq.). 80 Hz-2.00 kHz. Determined by Sample Rate ≤1 (squarewave:sinewave). 4:1 (squarewave:sinewave). Pink, White, Burst, USASI. Low level staircase waveform for D/A linearity testing. Produces a maximum amount of data-induced jitter on low-bandwidth transmission links. Two sinewave phased for reinforcement with normal polarity. A single binary zero value "walked" from LSB to MSB. 32-bit resolution when using triangular dither. Pesudo-random binary states of all bits. Peasses the signal from the rear panel Ref Input. Accepts	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro itude120 dBF ₅ to 0 dBF ₆ (usable to -14010 Hz to 45.8% of Sample Rate, [10 Hz- 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s]±0.01 dB,±0.01 dB,±0.01 dB, 15 Hz-22 kHz (<10 Hz high selection)10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole Butterworth, or 10-pole elliptic enabled)Fg/2 (maximum bandwidth), 20 kHz (6-pole elliptic enabled)T6 Hz (4-pole), 22 Hz (4-pole), 100 Hz (6-pole elliptic) enabled)Fg/2 (maximum bandwidth), 20 kHz (6-pole elliptic)Fg/2 (maximum bandwidth), 20 kHz (6-pole), 20 kHz (6-pole elliptic)Fg/2 (maximum bandwidth), 20 kHz (6-pole elliptic)Fg/2 (maximum bandwidth), 20 kHz (6-pole elliptic)Fg/2 (maximum bandwidth), 20 kHz (6-pole elliptic)
Variable Phase Sine V Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range Lower Tone Range Lower Tone Range Lower Tone Range M Frequency Range M Range	Nave ±180 deg. £180 deg. Sine amplitude + offset amplitude ≤100% F _s . d Sine Burst 2 cycles-65536 cycles. 1 to (number of Interval cycles minus 1). ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. 1. Let Var% of Sample Rate [22.56 kHz at 48 ks/s]. 40 Hz-500 Hz. aveforms 3.00 kHz to (47% of Sample Rate −1/2 lM freq.). 80 Hz-2.00 kHz. Determined by Sample Rate ≤0.000001% [-160 dB]. 4:1 (squarewave:sinewave). Pink, White, Burst, USASI. Low level staircase waveform for D/A linearity testing. Produces a maximum amount of data-induced jitter on low-bandwidth transmission links. Two sinewaves phased for reinforcement with normal polarity. A single binary zero value "walked" from LSB to MSB. A single binary zero value "walked" from LSB to MSB. 3.2-bit resolution when using triangular dither. Pseudo-random binary states of all bits. Passes the signal from the rear panel Ref Input. Accepts sample rates from 27 kHz-200 kHz and outputs at pro-	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro itude
Variable Phase Sine V Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range Lower Tone Range Lower Tone Range Lower Tone Range M Frequency Range M Range	Nave ±180 deg. £180 deg. Sine amplitude + offset amplitude ≤100% F _s . d Sine Burst 2 cycles-65536 cycles. 1 to (number of Interval cycles minus 1). ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate. 12 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s]. 40 Hz-500 Hz. aveforms 3.00 kHz to (47% of Sample Rate −1/2 IM freq.). 80 Hz-2.00 kHz. Determined by Sample Rate ≤1 (squarewave:sinewave). 4:1 (squarewave:sinewave). Pink, White, Burst, USASI. Low level staircase waveform for D/A linearity testing. Produces a maximum amount of data-induced jitter on low-bandwidth transmission links. Two sinewave phased for reinforcement with normal polarity. A single binary zero value "walked" from LSB to MSB. 32-bit resolution when using triangular dither. Pesudo-random binary states of all bits. Peasses the signal from the rear panel Ref Input. Accepts	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro itude120 dBF ₈ to 0 dBF ₈ (usable to -14010 Hz to 48.8% of Sample Rate, [10 Hz- 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [96 ks/s] ±0.01 dB ±0.01 dB, 15 Hz-22 kHz (<10 Hz high selection) <10 Hz (4-pole), 22 Hz (4-pole), 100 H (4-pole Butterworth, or 10-pole elliptic enabled) Fg/2 (maximum bandwidth), 20 kHz (6 (6-pole elliptic) ANSI-IEC "A" weighting, per IEC Rec CCIR Rec. 468, CCIR RMS per AES1 EEE Std "A3-1978, CCITT per CCITI weighting corresponding to 15 phon to Harmonic weighting141 dBF ₈ unweighted, -144 dBF ₈ A-weighted, -140 dBF ₈ CCIR RMS, -130 dBF ₈ CCIR QPk, -142 dBF ₈ SD kHz LP, -143 dBF ₈ IS kHz LP, -139 dBF ₈ "F" weighting, -152 dBF ₈ C de . 10 Hz to 40% of Sample Rate, [10 Hz-17.6 kHz at 44.1 ks/s], [10 Hz-19.9 kHz at 48.41 ks/s], [10 Hz-19.9 kHz at 48.41 ks/s], [10 Hz-19.9 kHz at 48.41 ks/s],
Variable Phase Sine V Phase Range Sine + Offset Offset Amplitude Sine Burst and Shape Interval Burst On Square Wave Frequency Range Lower Tone Range Lower Tone Range Lower Tone Range M Frequency Range M Range	Nave±180 deg±180 degSine amplitude + offset amplitude ≤100% F _s d Sine Burst2 cycles-65536 cycles1 to (number of Interval cycles minus 1)≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate≥1 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s]40 Hz-500 Hz. aveforms 3.00 kHz to (47% of Sample Rate -1/2 IM freq.)80 Hz-2.00 kHzDetermined by Sample Rate≤0.000001% [-160 dB]4:1 (squarewave:sinewave)Pink, White, Burst, USASILow level staircase waveform for D/A linearity testingProduces a maximum amount of data-induced jitter on low-bandwidth transmission linksTwo sinewaves phased for reinforcement with normal polarityA single binary zero value "walked" from LSB to MSB3 25-bit resolution when using triangular ditherPseudo-random binary states of all bitsPasses the signal from the rear panel Ref Input. Accepts sample rates from 27 kHz-200 kHz and outputs at programmed sample rate. Ratio of rates may not exceed	Acquisition time / memory Embedded Audio Mea Wideband Level/Ampl Range	. 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP pro itude

Quasi-Anechoic Acou	Four pink sequences, four white sequences.
	dc to Sample Rate ÷ 2.
	32767 samples or 131071 samples.
	ne Waveforms ("Arb Wfm")
	Determined by the associated file specified in the panel drop-down box.
	dc to Sample Rate ÷ 2 256 points–16384 points per channel. Utility is provided to
Lengin	prepare waveform from user specified frequency, amplitude, and phase data.
	Sample Rate ÷ Length [2.93 Hz at 48 ks/s for a waveform 16384 points in length].
	s (Length / 2) –1 [8191 for Length = 16384].
Dither Probability Distribution .	. Triangular or rectangular; pseudo random, independent for each channel.
Spectral Distribution	Flat (white) or Shaped (+6 dB/oct).
Amplitude	
Pre-Emphasis Filters	
Filter Shape	
Response Accuracy Residual Distortion	±0.02 dB, 10 Hz to 45% of Sample Rate. ≤0.00003% [–130 dB].
DIGITAL ANALYZER	(SYS-2720 and SYS-2722 only)
Digital Interface Signa	al Measurements
	8 kHz–200 kHz, ±0.0003% [±3 PPM] with internal reference, ±0.0001% [±1 PPM] external reference.
Input Amplitude	0 Van 10 00 Van ±/59/ ± 25 mV/
	0 Vpp–10.00 Vpp, ±(5% + 25 mV). 0 Vpp–2.5 Vpp, ±(5% + 6 mV).
	Usplays output voltage of Toslink® receiver (not linearly related to optical input power).
Output to Input Delay	Measures propagation from the rear panel AES/EBU Reference Output to the input.
Range	12.7 to +115.1 UI [-10% to +90% of frame] in seconds, 60 ns resolution.
Digital Interface Analy	zer with "INTERVU" DSP program
AES/EBU Input Voltage	,
	0 Vpp-10.00 Vpp, ±(10% + 50 mV).
	0 Vpp–2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples.
Acquisition time / memory	0 Vpp–2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples.
Acquisition time / memory	0 Vpp–2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. surrements with "ANALYZER" DSP program
Acquisition time / memory Embedded Audio Mea Wideband Level/Amp	0 Vpp–2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. surrements with "ANALYZER" DSP program
Acquisition time / memory Embedded Audio Mea Wideband Level/Amp Range	0 Vpp-2.5 Vpp, ±(8% + 12 mV). v. 19.66 ms / 1,572,864 samples. **surements with "ANALYZER" DSP program titude 120 dBF _s to 0 dBF _s (usable to -140 dBF _s) 10 Hz to 45.8% of Sample Rate, [10 Hz–20.2 kHz at 44.1 ks/s], [10 Hz–42.0 kHz at 48 ks/s], [10 Hz–44.0 kHz at 48 ks/s], [10 Hz–44.0 kHz at 48 ks/s], 10 Hz–42.0 kHz at 48 ks/s], 10 Hz–44.0 kHz at 48 ks/s], 10 Hz–42.0 kH
Acquisition time / memory Embedded Audio Mea Wideband Level/Amp Range Frequency Range	0 Vpp-2.5 Vpp, ±(8% + 12 mV). v. 19.66 ms / 1,572,864 samples. Issurements with "ANALYZER" DSP program Ilitude 120 dBF ₈ to 0 dBF ₈ (usable to -140 dBF ₈). 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s].
Acquisition time / memory Embedded Audio Mea Wideband Level/Amp Range Frequency Range Accuracy	0 Vpp-2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP program litude 120 dBF ₈ to 0 dBF ₈ (usable to -140 dBF ₈). 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s]. ±0.01 dB. ±0.01 dB. ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter
Acquisition time / memory Embedded Audio Mea Wideband Level/Amp Range Frequency Range Accuracy Flatness	0 Vpp-2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. surrements with "ANALYZER" DSP program litude 120 dBF ₈ to 0 dBF ₈ (usable to -140 dBF ₈). 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s]. ±0.01 dB. ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection). <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole butterworth, or 10-pole elliptic if no other filters and
Acquisition time / memory Embedded Audio Mea Wideband Level/Amp Range Frequency Range Accuracy Flatness High pass Filters	0 Vpp-2.5 Vpp, ±(8% + 12 mV). 7. 19.66 ms / 1,572,864 samples. **Issurements with "ANALYZER" DSP program litude 120 dBF _S to 0 dBF _S (usable to -140 dBF _S). 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s]. ±0.01 dB, ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection). <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters an enabled). F _g /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kHz
Acquisition time / memory Embedded Audio Mea Wideband Level/Amp Range Frequency Range Accuracy Flatness High pass Filters Low pass Filters	0 Vpp-2.5 Vpp, ±(8% + 12 mV). 7. 19.66 ms / 1,572,864 samples. Issurements with "ANALYZER" DSP program Iitude 120 dBFs to 0 dBFs (usable to -140 dBFs). 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s]. ±0.01 dB. ±0.01 dB. ±0.01 dB. 15 Hz-22 kHz (<10 Hz high-pass filter selection). <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters an enabled). Fj2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kt (6-pole elliptic). ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per CCIR Rec. 468, CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0-41, "F" weighting corresponding to 15 phon loudness contour, HI
Acquisition time / memory Embedded Audio Mea Wideband Level/Amp Range Frequency Range Accuracy Flatness High pass Filters Low pass Filters Weighting Filters Weighting Filters	0 Vpp-2.5 Vpp, ±(8% + 12 mV) 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP program litude120 dBF ₅ to 0 dBF ₅ (usable to -140 dBF ₅) 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s] ±0.01 dB, ±0.01 dB, ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection) <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters an enabled) Fg/2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kh (6-pole elliptic) ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per CCIR Rec. 468, CCIR RMS per AES17, C-message per
Acquisition time / memory Embedded Audio Mea Wideband Level/Amp Range Frequency Range Accuracy Flatness High pass Filters Low pass Filters	0 Vpp-2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. Issurements with "ANALYZER" DSP program Iitude 120 dBFs to 0 dBFs (usable to -140 dBFs). 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48.6 ks/s]. ±0.01 dB. ±0.01 dB. ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection). 10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters an enabled). Fg/2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kH (6-pole elliptic). ANSI-IEC "A" weighting, per IEC Rec. 179, CCIR QPk per CCIR Rec. 468, CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITP per CCITP Rec. 041, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. 141 dBFs unweighted,
Acquisition time / memory Embedded Audio Mea Wideband Level/Amp Range Frequency Range Accuracy Flatness High pass Filters Low pass Filters Weighting Filters	0 Vpp-2.5 Vpp, ±(8% + 12 mV). · 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP program litude 120 dBF ₈ to 0 dBF ₈ (usable to -140 dBF ₈). 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s]. ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection). <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters an enabled). F _j /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kf (6-pole elliptic). ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per CCIR Rec 468, CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. O 41, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. 141 dBF ₈ unweighted,
Acquisition time / memory Embedded Audio Mea Wideband Level/Amp Range Frequency Range Accuracy Flatness High pass Filters Low pass Filters Weighting Filters	0 Vpp-2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. Issurements with "ANALYZER" DSP program Iitude 120 dBFs to 0 dBFs (usable to -140 dBFs). 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s]. ±0.01 dB. ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection). <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters an enabled). Fg/2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kt (6-pole elliptic). ANSI-IEC "A" weightling, per IEC Rec. 179, CCIR QPk per CCIR Rec. 468, CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. O.41, "F" weightling corresponding to 15 phon loudness contour, HI Harmonic weightling. 141 dBFs unweightled, -144 dBFs A-weightled, -144 dBFs CCIR RMS, -130 dBFs CCIR QPk,
Acquisition time / memory Embedded Audio Mea Wideband Level/Amp Range Frequency Range Accuracy Flatness High pass Filters Low pass Filters Weighting Filters	0 Vpp-2.5 Vpp, ±(8% + 12 mV). · 19.66 ms / 1,572,864 samples. surrements with "ANALYZER" DSP program litude · -120 dBF _s to 0 dBF _s (usable to -140 dBF _s). · 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s]. · ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection). · <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters are enabled). -Fy/z (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kt (6-pole elliptic). ANSI-EC "A" weighting, per IEC Rec 179, CCIR QPk per CNCIR Rec. 648, CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. 141 dBF _s unweighted, -140 dBF _s CCIR RMS, -130 dBF _s CCIR RMS,
Acquisition time / memory Embedded Audio Mea Wideband Level/Amp Range Frequency Range Accuracy Flatness High pass Filters Low pass Filters Weighting Filters	0 Vpp-2.5 Vpp, ±(8% + 12 mV). · 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP program litude 120 dBF ₅ to 0 dBF ₅ (usable to -140 dBF ₅). 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.8 ks/s], [10 Hz-44.0 kHz at 96 ks/s]. ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection). <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters ar enabled). Fg/2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kf (6-pole elliptic). ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per IECE Sid 743-1978, CCITT per CCITT Rec. O 41, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. 141 dBF ₅ unweighted, -140 dBF ₅ CCIR RMS, -130 dBF ₅ CCIR RMS, -142 dBF ₅ 20 kHz LP, -143 dBF ₅ "F" weighting, -152 dBF ₅ CCITT,
Acquisition time / memory Embedded Audio Mea Wideband Level/Amp Range Frequency Range Accuracy Flatness High pass Filters Low pass Filters Weighting Filters	0 Vpp-2.5 Vpp, ±(8% + 12 mV). · 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP program litude -120 dBF _s to 0 dBF _s (usable to -140 dBF _s). · 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.8 ks/s], [10 Hz-44.0 kHz at 96 ks/s]. · ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection). · <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters are enabled). -FyZ (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kf (6-pole elliptic). ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per CCIR Rec A68, CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. -141 dBF _s unweighted, -140 dBF _s CCIR RMS, -130 dBF _s CCIR QPk, -143 dBF _s 15 kHz LP, -143 dBF _s 15 kHz LP, -143 dBF _s 15 kHz LP, -143 dBF _s F" weighting, -152 dBF _s CCITT, -151 dBF _s C Message.
Acquisition time / memory Embedded Audio Mea Wideband Level/Amp Range Frequency Range Accuracy Flatness Low pass Filters Weighting Filters Residual Noise (at 48 ks/s and 96 ks/s f _s)	0 Vpp-2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. Issurements with "ANALYZER" DSP program Iitude -120 dBFs to 0 dBFs (usable to -140 dBFs). 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48.6 ks/s]. ±0.01 dB. ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection). 10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters ar enabled). -Fy2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kf (6-pole elliptic). ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per CCIR Rec. 468, CCIR RMS per AES17, C-message per IEEE Std 734-1978, CCITT per CCITT Rec. 041, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. -141 dBFs unweighted, -144 dBFs, CCIR QPk, -142 dBFs, CCIR QPk, -142 dBFs, CCIR QPk, -143 dBFs, TS kHz LP, -139 dBFs, "F" weighting, -152 dBFs CCITT, -151 dBFs C Message.
Acquisition time / memory Embedded Audio Mea Wideband Level/Amp Range Frequency Range Accuracy Flatness Low pass Filters Weighting Filters Residual Noise (at 48 ks/s and 96 ks/s f _s)	0 Vpp-2.5 Vpp, ±(8% + 12 mV). · 19.66 ms / 1,572,864 samples. surrements with "ANALYZER" DSP program litude - 120 dBF ₅ to 0 dBF ₅ (usable to -140 dBF ₅). · 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.8 ks/s], [10 Hz-44.0 kHz at 96 ks/s]. · ±0.01 dB, 15 Hz-22 kHz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole abuterworth, or 10-pole elliptic if no other filters are enabled). · 50 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole abuterworth, or 10-pole elliptic if no other filters are enabled). · F _g /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kf (6-pole elliptic). - NNSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per CCIR Rec. 468, CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. - 141 dBF ₅ gn-weighted, -144 dBF ₅ A-weighted, -144 dBF ₅ CCIR RMS, -130 dBF ₅ F weighting, -152 dBF ₅ CCITT, -151 dBF ₅ C Message. de · 10 Hz to 40% of Sample Rate, [10 Hz-17.8 kHz at 44.1 ks/s], [10 Hz-19.2 kHz at 48 ks/s],
Acquisition time / memory Embedded Audio Mea Wideband Level/Amp Range Frequency Range Accuracy Flatness Low pass Filters Weighting Filters Residual Noise (at 48 ks/s and 96 ks/s f _s)	0 Vpp-2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. Issurements with "ANALYZER" DSP program Iitude -120 dBFs to 0 dBFs (usable to -140 dBFs). 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48.6 ks/s]. ±0.01 dB. ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection). 10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters are enabled). -Fy2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kf (6-pole elliptic). ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per CCIR Rec. 468, CCIR RMS per AES17, C-message per IEEE Sid 734-1978, CCITT per CCITT Rec. 041, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. -141 dBFs unweighted, -144 dBFs, CCIR QPk, -142 dBFs (CCIR QPk, -142 dBFs [5 KHz LP, -130 dBFs "F" weighting, -152 dBFs CCITT, -151 dBFs (5 Message. ide 10 Hz to 40% of Sample Rate, [10 Hz-17.6 kHz at 44.1 ks/s], [10 Hz-19.2 kHz at 48 ks/s], [10 Hz-19.2 kHz at 48 ks/s], [10 Hz-13.4 kHz at 49 6 ks/s].
Acquisition time / memory Embedded Audio Mea Wideband Level/Amp Range Frequency Range Accuracy Flatness Low pass Filters Weighting Filters Weighting Filters Weighting Filters Weighting Filters Thus and 96 ks/s f ₆)	0 Vpp-2.5 Vpp, ±(8% + 12 mV). · 19.66 ms / 1,572,864 samples. surrements with "ANALYZER" DSP program litude · -120 dBF _s to 0 dBF _s (usable to -140 dBF _s). · 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s]. · ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection). · <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters an enabled). - Ky2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kH (6-pole elliptic). ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per CRE 1743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. 141 dBF _s unweighted,140 dBF _s CCIR RMS,130 dBF _s CCIR RMS,130 dBF _s TF weighting,152 dBF _s CCITT,143 dBF _s 15 kHz LP,143 dBF _s T Keighting,152 dBF _s CCITT,151 dBF _s C Message. · 10 Hz to 40% of Sample Rate, [10 Hz17.6 kHz at 44.1 ks/s], [10 Hz19.2 kHz at 48 ks/s], [10 Hz19.2 kHz at 48 ks/s], [10 Hz3.4 kHz at 96 ks/s]. · <10 Hz to 47% of Sample Rate,
Acquisition time / memory Embedded Audio Mea Wideband Level/Amp Range Frequency Range Accuracy Flatness Low pass Filters Weighting Filters Weighting Filters Weighting Filters Weighting Filters Thus and 96 ks/s f ₆)	0 Vpp-2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples. Issurements with "ANALYZER" DSP program litude -120 dBF ₈ to 0 dBF ₈ (usable to -140 dBF ₈). 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.8 ks/s], [10 Hz-44.0 kHz at 96 ks/s]. ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection). 10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters an enabled). F _g /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kH (6-pole elliptic). ANSI-IEC "A" weighting, per IEC Rec. 179, CCIR QPk per CCIR Rec. 468, CCIR RMS per AES17, C-message per IEEE Std 73-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI Harmoric weighting. -141 dBF ₈ unweighted, -144 dBF ₈ A-weighted, -144 dBF ₈ CCIR RMS, -130 dBF ₈ CCIR RMS, -130 dBF ₈ CCIR SMS, -130 dBF ₈ C Message. ide 10 Hz to 40% of Sample Rate, [10 Hz-17.6 kHz at 44.1 ks/s], [10 Hz-19.9 kHz at 44.1
Acquisition time / memory Embedded Audio Mea Wideband Level/Amp Range Frequency Range Accuracy Flatness Low pass Filters Weighting Filters Weighting Filters Weighting Filters Weighting Filters Thus and 96 ks/s f ₆)	0 Vpp-2.5 Vpp, ±(8% + 12 mV). · 19.66 ms / 1,572,864 samples. surrements with "ANALYZER" DSP program litude · -120 dBF _s to 0 dBF _s (usable to -140 dBF _s). · 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s]. · ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection). · <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters an enabled). - Ky2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kH (6-pole elliptic). ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per CRE 1743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. 141 dBF _s unweighted,140 dBF _s CCIR RMS,130 dBF _s CCIR RMS,130 dBF _s TF weighting,152 dBF _s CCITT,143 dBF _s 15 kHz LP,143 dBF _s T Keighting,152 dBF _s CCITT,151 dBF _s C Message. · 10 Hz to 40% of Sample Rate, [10 Hz17.6 kHz at 44.1 ks/s], [10 Hz19.2 kHz at 48 ks/s], [10 Hz19.2 kHz at 48 ks/s], [10 Hz3.4 kHz at 96 ks/s]. · <10 Hz to 47% of Sample Rate,
Acquisition time / memory Embedded Audio Mea Wideband Level/Amp Range Frequency Range Accuracy Flatness Low pass Filters Weighting Filters Weighting Filters Weighting Filters Weighting Filters Thus and 96 ks/s f ₆)	0 Vpp-2.5 Vpp, ±(8% + 12 mV). · 19.66 ms / 1,572,864 samples. surrements with "ANALYZER" DSP program litude · -120 dBFs to 0 dBFs (usable to -140 dBFs). · 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s]. · ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection). · <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters an enabled). · F _g /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kf (6-pole elliptic). ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per CR Rec. 468, CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. -141 dBFs anweighted, -140 dBFs CCIR RMS, -130 dBFs CCIR CR RMS, -130 dBFs CCIR CR RMS, -130 dBFs CR RMS, -130 dBFs CR Schesage. dec. 10 Hz to 40% of Sample Rate, [10 Hz-19.2 kHz at 48 ks/s], [10 Hz-21.8 kHz at 48 ks/s], [10 Hz-21.8 kHz at 48 ks/s], [10 Hz-21.9 kHz at 48 ks/s],
Acquisition time / memory Embedded Audio Mex Wideband Level/Amp Range Frequency Range Accuracy Flatness High pass Filters Weighting Filters Weighting Filters Weighting Filters Thus Pand Amplitus frequency Range Narrow Band Amplitus Frequency Range THD+N Measurement Frequency Range Residual THD+N	0 Vpp-2.5 Vpp, ±(8% + 12 mV). · 19.66 ms / 1,572,864 samples. surrements with "ANALYZER" DSP program litude · -120 dBFs to 0 dBFs (usable to -140 dBFs). · 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s]. · ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection). · <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters an enabled). · F _g /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kf (6-pole elliptic). ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per CR Rec. 468, CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. -141 dBFs anweighted, -140 dBFs CCIR RMS, -130 dBFs CCIR CR RMS, -130 dBFs CCIR CR RMS, -130 dBFs CR RMS, -130 dBFs CR Schesage. dec. 10 Hz to 40% of Sample Rate, [10 Hz-19.2 kHz at 48 ks/s], [10 Hz-21.8 kHz at 48 ks/s], [10 Hz-21.8 kHz at 48 ks/s], [10 Hz-21.9 kHz at 48 ks/s],
Acquisition time / memory Embedded Audio Mea Wideband Level/Amp Range Frequency Range Accuracy Flatness High pass Filters Weighting Filters Weighting Filters Weighting Filters Thus and Amplitus Frequency Range Thus Measurement Frequency Range Thus Measurement Frequency Range Residual THD+N High pass Filters Low pass Filters Low pass Filters	0 Vpp-2.5 Vpp, ±(8% + 12 mV) 19.66 ms / 1,572,864 samples. surements with "ANALYZER" DSP program litude120 dBF ₅ to 0 dBF ₅ (usable to -140 dBF ₅) 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.8 ks/s], [10 Hz-44.0 kHz at 96 ks/s] ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection) <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters an enabled) F ₃ /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kf (6-pole elliptic) ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per CCIR Rec A68, CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. O.41, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting 141 dBF ₅ unweighted, 140 dBF ₅ CCIR QPk, 142 dBF ₅ 20 kHz LP, 130 dBF ₅ CCIR QPk, 142 dBF ₅ 20 kHz LP, 130 dBF ₅ CCIR QPk, 142 dBF ₅ C Message. de 10 Hz to 40% of Sample Rate, [10 Hz-17.6 kHz at 44.1 ks/s], [10 Hz-91.2 kHz at 44.1 ks/s], [10 Hz-92.8 kHz at 44.8 ks/s], [10 Hz-93.8 kHz at 48 ks/s], [10 Hz-93.8 kHz at 48 ks/s], [10 Hz-43.2 kHz at 96 ks/s] <10 Hz to 47% of Sample Rate, [10 Hz-19.9 kHz at 44.8 ks/s], [10 Hz-43.2 kHz at 96 ks/s] <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz

Frequency Measure	10 Hz to 47% of Sample Rate,
range	[10 Hz-21.0 kHz at 44.1 ks/s],
	[10 Hz=21.0 kHz at 44.1 kS/s],
	[10 Hz-46.0 kHz at 96 ks/s].
	* .
Embedded Audio, F	FT Spectrum Analyzer with "FFT" DSP program
A delties I et-	(48-bit processing)
	800 samples-4 M samples in 15 steps. 256-32768 samples in binary steps.
Windows	. , .
	1–4096 averages in binary steps. Averaging is power-
Averaging	based (frequency domain), or synchronous (time domain)
Distortion Products	≤–160 dB.
Embedded Audio M	Iultitone Audio Analyzer with "FASTTEST" DSP program
Embedded Addio, IV	(48 bit processing)
Acquisition Length	512–32768 samples in binary steps.
	512–32768 samples in binary steps.
	Level vs frequency, Total distortion vs frequency, Noise v
	frequency, Phase vs frequency, Crosstalk vs frequency, Masking curve.
Frequency Resolution	Sample Rate ÷ 2 ¹⁵ [1.465 Hz with 48 ks/s].
Frequency Correction Ra	ange ±3%.
Distortion	≤–140 dB.
Embedded Audio, Q	Quasi-Anechoic Acoustical Tester with "MLS" DSP
Signals	Four pink sequences and four white sequences, selected
	by triggering generator MLS setting.
FRONT PANEL AUX	
FRONT PANEL AUX Generator Monitors (all	
Generator Monitors (all	ILIARY SIGNALS units except SYS-2720) Channel A; Channel B
Generator Monitors (all	ILIARY SIGNALS units except SYS-2720)
Generator Monitors (all Generator Auxiliary Sign	ILLIARY SIGNALS units except SYS-2720) Channel A; Channel B nals (all units except SYS-2720)
Generator Monitors (all Generator Auxiliary Sign Analyzer Signal Monitor	ILIARY SIGNALS units except SYS-2720) Channel A; Channel B nals (all units except SYS-2720) Sync Output Trig/Gate Input rs (all units except SYS-2720)
Generator Monitors (all Generator Auxiliary Sign Analyzer Signal Monitor Digital Signal Monitors (ilLIARY SIGNALS units except SYS-2720) Channel A; Channel B nals (all units except SYS-2720) Sync Output Trig/Gate Input Iss (all units except SYS-2720) Channel A; Channel B; Reading (SYS-2720 and SYS-2722 only) Channel 1: Channel 2: Reading 1: Reading 2
Generator Monitors (all Generator Auxiliary Sign Analyzer Signal Monitors Digital Signal Monitors REAR PANEL AUXII	ilLIARY SIGNALS units except SYS-2720) Channel A; Channel B nals (all units except SYS-2720) Sync Output/ Trig/Gate Input rs (all units except SYS-2720) Channel A; Channel B; Reading (SYS-2720 and SYS-2722 only) Channel 1: Channel 2: Reading 1: Reading 2
Generator Monitors (all Generator Auxiliary Sign Analyzer Signal Monitors Digital Signal Monitors REAR PANEL AUXII Reference Input ("R	ILIARY SIGNALS units except SYS-2720) Channel A; Channel B nals (all units except SYS-2720) Sync Output/ Trig/Gate Input s; (all units except SYS-2720) Channel A; Channel B; Reading (SYS-2720 and SYS-2720 only) Channel 1: Channel 2: Reading 1: Reading 2

Reference Input ("RI	EF IN") Characteristics
Input formats	28 kHz–200 kHz AES/EBU, NTSC, PAL, or SECAM video or 8 kHz–10 MHz square wave.
Reference Output ("	REF OUT") Characteristics
Output format	AES/EBU (per AES3-r1997).
GENERAL/ENVIROR	NMENTAL
Power Requirements .	100/120/230/240 Vac (-10%/+6%), 50/60 Hz, 240 VA ma
EMC	Complies with 89/336/EEC, CISPR 22 (class B), and FCC 15 subpart J (class B).
Dimensions	
Width	41.9 cm [16.5 inches].
Height	14.6 cm [5.75 inches] bench-top (feet attached) 3U [5.25 inches] rack-mount.
Depth	34.5 cm [13.6 inches].
Weight	Approximately 15.4 kg [34 lbs].
Safety	Complies with 73/23/EEC, 93/68/EEC, and EN61010-1 (1990) + Amendment 1 (1992) + Amendment 2 (1995). Installation Category II, Pollution Degree 2.

The 2700 series is available in four models to test analog signals, digital signals or both (dual domain).

SYS-2722 offers analog and digital inputs and outputs, DSP analysis of both digital and internally-converted analog signals, DSP-generated digital and analog signals, and low-distortion, hardware-implemented generation and analysis for analog signals. It is a true dual domain instrument.

SYS-2720 offers digital input and output and DSP generation and analysis of digital signals. It has no analog I/O capabilities.

SYS-2712 offers analog inputs and outputs, DSP analysis of internally-converted analog signals, DSP-generated analog signals, and low-distortion hardware-implemented signal generation and analysis. It has no digital I/O capabilities.

SYS-2702 offers analog input and output, with low-distortion hardware-implemented signal generation and analysis. It has no digital I/O capabilities.

The GPIB option adds an IEEE-488 interface to the instrument.

Three major internal analog options may be fitted to all instruments except the digital-only SYS-2720. Note that some BUR- and IMD-type capabilities are already provided in DSP generation and analysis for SYS-2722 and SYS-2712.

The **BUR** option adds analog-domain generation of burst sine waves with controllable burst duration, interval and amplitude between bursts. It also includes analog-generated square waves to 20 kHz, analog random and pseudorandom white and pink noise, and bandpass-filtered pink noise.

The IMD option tests analog-domain devices for intermodulation distortion to the SMPTE/DIN, CCIF and DIM/TIM standards.

The **W&F** option measures analog wow & flutter to the IEC/DIN, NAB, JIS, and scrape flutter standards, weighted or unweighted.

A 2700 series **APIB** interface connects the instrument to your PC, and is included with all models, except the GPIB option. APIB is available in your choice of an ISA, PCI or PCMCIA PC card.

Each instrument except the digital-only SYS-2720 can accept up to seven analog filter option modules, selectable from a large assortment of lowpass, bandpass and psophometric weighting filters. Other external accessories include the **PSIA-2722** Programmable Serial Interface Adapter for connecting to devices that use non-standard serial interfaces, the **SWR-2122** family of high-performance signal switchers/multiplexers and the **DCX-127** DC/Ohms/low speed digital logic multifunction module.

2700 SERIES ORI	DERING INFORMATION
Models	
SYS-2722	Analog and Digital Input and Output, with DSP. Dual domain, 192k.
SYS-2720	Digital Input and Output, with DSP. 192k.
SYS-2712	Analog Input and Output, with DSP
SYS-2702	Analog Input and Output
Options	
	Analog burst sine waves, square waves to 20 kHz, random and pseudorandom white and pink noise signals
IMD	Analog Intermodulation Distortion to SMPTE/DIN, CCF and DIM/TIM standards
	Wow & Flutter to IEC/DIN, NAB, JIS and scrape flutter standards, weighted or unweighted
EWP-2700	Three-Year Extended Warranty (Adds three more years to standard three-year warranty included with instrument)
Interface Options	(selected at time of order)
S2-ISA	ISA Interface Card w/AP2700 software
S2-PCI	PCI Interface Card w/AP2700 software
S2-PCMCIA	PCMCIA Interface Card w/AP2700 software
-G	IEEE-488 (GPIB) Interface
Filters	
S-AES17	Lowpass filter for AES17 DAC measurements
OPT-2020	Lowpass filter for DAC measurements
FIL-xxx	Family of analog psophometric noise weighting filters
FLP-xxx	Family of analog sharp lowpass filters
FBP-xxx	Family of analog 1/3 octave bandpass filters
External Accesso	ries
AUX-0025	Switching Amplifier Measurement Filter
	Programmable Serial Interface Adapter
SWR-2122	12x2 switcher family expandable to 192 channels
DCX-127	Multifunction module including 4 1/2 digit DC voltmeter/ohmmeter with miscellaneous digital control ports.
RAK-S2	Rackmount kit
HAN-S2	Carrying handle

Testing for Optimal Results

5750 SW Arctic Drive Beaverton, OR 97005 **Tel: 503-627-0832** FAX: 503-641-8906

US Toll Free: 1-800-231-7350